IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v96y2009i8p1201-1206.html
   My bibliography  Save this article

Shade effect on photosynthesis and photoinhibition in olive during drought and rewatering

Author

Listed:
  • Sofo, Adriano
  • Dichio, Bartolomeo
  • Montanaro, Giuseppe
  • Xiloyannis, Cristos

Abstract

Olive tree (Olea europaea L.) is commonly grown under environmental conditions characterised by water deficit, high temperatures and irradiance levels typical of Mediterranean semi-arid regions. Measurement of gas exchange, chlorophyll content, chlorophyll fluorescence and photoinhibition was carried out on two-year-old olive trees (cv. 'Coratina') subjected to a 21-day period of water deficit followed by 23 days of rewatering. At the beginning of the experiment, plants were divided in to two groups and subjected to different light regimes: exposed plants (EP) under a mean photosynthetically active radiation (PAR) at mid-day of 1800[mu]molm-2s-1 and shaded plants (SP) under a mean PAR of 1200[mu]molm-2s-1. The effect of drought and high irradiance levels caused a reduction of gas exchange and photosystem 2 (PSII) efficiency, in terms of quantum yield of PSII ([Phi]PSII) both in EP and SP. Shading conditions allowed plants to maintain a high photosynthetic activity at low values of stomatal conductance, whereas in EP the reductions in photosynthetic efficiency and intrinsic water efficiency were due to non-stomatal components of photosynthesis. The decrease in photosynthetic activity and the increase of photoinhibition under drought were more marked in EP than in SP. Full sunlight caused in EP a higher non-photochemical quenching, whereas SP showed a better photochemical efficiency. The information here obtained can be important to understand the mechanisms by which olive plants can minimize photoinhibition when subjected to simultaneous abiotic stresses.

Suggested Citation

  • Sofo, Adriano & Dichio, Bartolomeo & Montanaro, Giuseppe & Xiloyannis, Cristos, 2009. "Shade effect on photosynthesis and photoinhibition in olive during drought and rewatering," Agricultural Water Management, Elsevier, vol. 96(8), pages 1201-1206, August.
  • Handle: RePEc:eee:agiwat:v:96:y:2009:i:8:p:1201-1206
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(09)00073-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Marta M. Moreno & Sara González-Mora & Jaime Villena & Carmen Moreno, 2023. "Organic Hydromulches in Young Olive Trees in Pots: Effects on Soil and Plant Parameters," Agriculture, MDPI, vol. 13(12), pages 1-20, November.
    2. Jiang, Shouzheng & Tang, Dahua & Zhao, Lu & Liang, Chuan & Cui, Ningbo & Gong, Daozhi & Wang, Yaosheng & Feng, Yu & Hu, Xiaotao & Peng, Yong, 2022. "Effects of different photovoltaic shading levels on kiwifruit growth, yield and water productivity under “agrivoltaic” system in Southwest China," Agricultural Water Management, Elsevier, vol. 269(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:96:y:2009:i:8:p:1201-1206. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.