IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v96y2009i10p1443-1448.html
   My bibliography  Save this article

Leaching of nutrients from a sugarcane crop growing on an Ultisol in Brazil

Author

Listed:
  • Ghiberto, P.J.
  • Libardi, P.L.
  • Brito, A.S.
  • Trivelin, P.C.O.

Abstract

Leaching is disadvantageous, both for economical and environmental reasons since it may decrease the ecosystem productivity and may also contribute to the contamination of surface and ground water. The objective of this paper was to quantify the loss of nitrogen and sulfur by leaching, at the depth of 0.9m, in an Ultisol in São Paulo State (Brazil) with high permeability, cultivated with sugarcane during the agricultural cycle of crop plant. The following ions were evaluated: nitrite, nitrate, ammonium, and sulfate. Calcium, magnesium, potassium, and phosphate were also evaluated at the same depth. The sugarcane was planted and fertilized in the furrows with 120kgha-1 of N-urea. In order to find out the fate of N-fertilizer, four microplots with 15N-enriched fertilizer were installed. Input and output of the considered ions at the depth of 0.9m were quantified from the flux density of water and the concentration of the elements in the soil solution at this soil depth: tensiometers, soil water retention curve and soil solution extractors were used for this quantification. The internal drainage was 205mm of water, with a total loss of 18kgha-1 of N and 10kgha-1 of S. The percentage of N in the soil solution derived from the fertilizer (%NSSDF) was 1.34, resulting in only 25gha-1 of N fertilizer loss by leaching during all agricultural cycle. Under the experimental conditions of this crop plant, that is, high demand of nutrients and high incorporation of crop residues, the leached N represented 15% of applied N and S leaching were not considerable; the higher amount of leached N was native nitrogen and a minor quantity from N fertilizer; and the leached amount of Ca, Mg, K and P did not exceed the applications performed in the crop by lime and fertilization.

Suggested Citation

  • Ghiberto, P.J. & Libardi, P.L. & Brito, A.S. & Trivelin, P.C.O., 2009. "Leaching of nutrients from a sugarcane crop growing on an Ultisol in Brazil," Agricultural Water Management, Elsevier, vol. 96(10), pages 1443-1448, October.
  • Handle: RePEc:eee:agiwat:v:96:y:2009:i:10:p:1443-1448
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(09)00133-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stewart, L.K. & Charlesworth, P.B. & Bristow, K.L. & Thorburn, P.J., 2006. "Estimating deep drainage and nitrate leaching from the root zone under sugarcane using APSIM-SWIM," Agricultural Water Management, Elsevier, vol. 81(3), pages 315-334, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Filoso, Solange & Carmo, Janaina Braga do & Mardegan, Sílvia Fernanda & Lins, Silvia Rafaela Machado & Gomes, Taciana Figueiredo & Martinelli, Luiz Antonio, 2015. "Reassessing the environmental impacts of sugarcane ethanol production in Brazil to help meet sustainability goals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1847-1856.
    2. Blum, Julius & Melfi, Adolpho José & Montes, Célia Regina & Gomes, Tamara Maria, 2013. "Nitrogen and phosphorus leaching in a tropical Brazilian soil cropped with sugarcane and irrigated with treated sewage effluent," Agricultural Water Management, Elsevier, vol. 117(C), pages 115-122.
    3. Grinshpan, Maayan & Furman, Alex & Dahlke, Helen E. & Raveh, Eran & Weisbrod, Noam, 2021. "From managed aquifer recharge to soil aquifer treatment on agricultural soils: Concepts and challenges," Agricultural Water Management, Elsevier, vol. 255(C).
    4. Ghiberto, P.J. & Libardi, P.L. & Trivelin, P.C.O., 2015. "Nutrient leaching in an Ultisol cultivated with sugarcane," Agricultural Water Management, Elsevier, vol. 148(C), pages 141-149.
    5. Ghiberto, P.J. & Libardi, P.L. & Brito, A.S. & Trivelin, P.C.O., 2011. "Components of the water balance in soil with sugarcane crops," Agricultural Water Management, Elsevier, vol. 102(1), pages 1-7.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thayalakumaran, Thabo & Bristow, Keith L. & Charlesworth, Philip B. & Fass, Thorsten, 2008. "Geochemical conditions in groundwater systems: Implications for the attenuation of agricultural nitrate," Agricultural Water Management, Elsevier, vol. 95(2), pages 103-115, February.
    2. Fabio Vale Scarpare & Luciana do Carmo Zotelli & Robson Barizon & Sergio Gustavo Quassi de Castro & Andre Herman Freire Bezerra, 2023. "Leaching Runoff Fraction for Nitrate and Herbicides on Sugarcane Fields: Implications for Grey Water Footprint," Sustainability, MDPI, vol. 15(8), pages 1-15, April.
    3. Li, Xiumei & Zhao, Weixia & Li, Jiusheng & Li, Yanfeng, 2021. "Effects of irrigation strategies and soil properties on the characteristics of deep percolation and crop water requirements for a variable rate irrigation system," Agricultural Water Management, Elsevier, vol. 257(C).
    4. van der Laan, M. & Annandale, J.G. & Bristow, K.L. & Stirzaker, R.J. & Preez, C.C. du & Thorburn, P.J., 2014. "Modelling nitrogen leaching: Are we getting the right answer for the right reason?," Agricultural Water Management, Elsevier, vol. 133(C), pages 74-80.
    5. Chikowo, R. & Corbeels, M. & Tittonell, P. & Vanlauwe, B. & Whitbread, A. & Giller, K.E., 2008. "Aggregating field-scale knowledge into farm-scale models of African smallholder systems: Summary functions to simulate crop production using APSIM," Agricultural Systems, Elsevier, vol. 97(3), pages 151-166, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:96:y:2009:i:10:p:1443-1448. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.