Advanced Search
MyIDEAS: Login

Applicability of targeting vegetative filter strips to abate fecal bacteria and sediment yield using SWAT

Contents:

Author Info

  • Parajuli, P.B.
  • Mankin, K.R.
  • Barnes, P.L.
Registered author(s):

    Abstract

    Quantifying and evaluating effects of best management practices (BMPs) on water quality is necessary to maximize the effectiveness of BMPs for minimizing pollutants. Watershed-scale evaluation of effects of BMP implementation on fecal bacteria and sediment yield can be estimated using a watershed water quality model, and strategies for identifying critical areas in a watershed can be pollutant specific. The soil and water assessment tool (SWAT) model was used in the Upper Wakarusa watershed (950 km2) in northeast Kansas to explore effectiveness of vegetative filter strip (VFS) lengths applied at the edge of fields to reduce non-point source pollution. The Upper Wakarusa watershed is a high priority total maximum daily load (TMDL) designation watershed for fecal bacteria in Kansas. This study characterizes fecal bacteria sources (human, livestock, and wildlife) and targets VFS to abate sediment and fecal bacteria pollution from the Upper Wakarusa watershed. Objectives of this study were to test the effectiveness of VFS lengths (0, 10, 15 and 20 m) for removing overland process sediment and fecal bacteria concentration, rank sub-watersheds after determining sediment and fecal bacteria contribution of each sub-watershed, and demonstrate the SWAT model's ability to evaluate effectiveness of VFS application to abate sediment and fecal bacteria using targeted and random approaches to select 10, 25 and 50% of the sub-watersheds. The 15-m VFS reasonably reduced fecal bacteria concentration in the watershed. The greatest difference between the target and random approaches to fecal bacteria reduction was at 50% VFS adoption; the target approach removed about 60% of fecal bacteria, and the random approach removed about 42%. For sediment yield, the greatest reduction was at 25% VFS adoption; the target approach removed about 63% of sediment yield, and the random approach removed about 33%. A targeted watershed modeling approach using SWAT was effective at reducing both fecal bacteria concentration and sediment yield.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/B6T3X-4SWP1YJ-1/2/6cd9a906bb1f252d04aa35b81701f236
    Download Restriction: Full text for ScienceDirect subscribers only

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Agricultural Water Management.

    Volume (Year): 95 (2008)
    Issue (Month): 10 (October)
    Pages: 1189-1200

    as in new window
    Handle: RePEc:eee:agiwat:v:95:y:2008:i:10:p:1189-1200

    Contact details of provider:
    Web page: http://www.elsevier.com/locate/agwat

    Related research

    Keywords: Non-point source pollution Best management practice Targeted approach Random approach Watershed;

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Philip W. Gassman & Manuel R. Reyes & Colleen H. Green & Jeffrey G. Arnold, 2007. "Soil and Water Assessment Tool: Historical Development, Applications, and Future Research Directions, The," Center for Agricultural and Rural Development (CARD) Publications 07-wp443, Center for Agricultural and Rural Development (CARD) at Iowa State University.
    2. Pachepsky, Y.A. & Sadeghi, A.M. & Bradford, S.A. & Shelton, D.R. & Guber, A.K. & Dao, T., 2006. "Transport and fate of manure-borne pathogens: Modeling perspective," Agricultural Water Management, Elsevier, vol. 86(1-2), pages 81-92, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Zhang, Shanghong & Liu, Yan & Wang, Taiwei, 2014. "How land use change contributes to reducing soil erosion in the Jialing River Basin, China," Agricultural Water Management, Elsevier, vol. 133(C), pages 65-73.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:95:y:2008:i:10:p:1189-1200. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.