IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v85y2006i3p233-242.html
   My bibliography  Save this article

Improvement of saline water use under drip irrigation system

Author

Listed:
  • Dehghanisanij, H.
  • Agassi, M.
  • Anyoji, H.
  • Yamamoto, T.
  • Inoue, M.
  • Eneji, A.E.

Abstract

No abstract is available for this item.

Suggested Citation

  • Dehghanisanij, H. & Agassi, M. & Anyoji, H. & Yamamoto, T. & Inoue, M. & Eneji, A.E., 2006. "Improvement of saline water use under drip irrigation system," Agricultural Water Management, Elsevier, vol. 85(3), pages 233-242, October.
  • Handle: RePEc:eee:agiwat:v:85:y:2006:i:3:p:233-242
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(06)00138-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. DehghaniSanij, Hossein & Yamamoto, Tahei & Rasiah, Velu, 2004. "Assessment of evapotranspiration estimation models for use in semi-arid environments," Agricultural Water Management, Elsevier, vol. 64(2), pages 91-106, January.
    2. Shalhevet, Joseph, 1994. "Using water of marginal quality for crop production: major issues," Agricultural Water Management, Elsevier, vol. 25(3), pages 233-269, July.
    3. Kipkorir, E. C. & Raes, D. & Massawe, B., 2002. "Seasonal water production functions and yield response factors for maize and onion in Perkerra, Kenya," Agricultural Water Management, Elsevier, vol. 56(3), pages 229-240, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Minhas, P.S. & Ramos, Tiago B. & Ben-Gal, Alon & Pereira, Luis S., 2020. "Coping with salinity in irrigated agriculture: Crop evapotranspiration and water management issues," Agricultural Water Management, Elsevier, vol. 227(C).
    2. Garg, Naveen & Choudhary, O.P. & Thaman, S. & Sharma, Vikas & Singh, Harmanjeet & Vashistha, Monika & Sekhon, K.S. & Sharda, Rakesh & Dhaliwal, M.S., 2022. "Effects of irrigation water quality and NPK-fertigation levels on plant growth, yield and tuber size of potatoes in a sandy loam alluvial soil of semi-arid region of Indian Punjab," Agricultural Water Management, Elsevier, vol. 266(C).
    3. Jackson, T.M. & Hanjra, Munir A. & Khan, S. & Hafeez, M.M., 2011. "Building a climate resilient farm: A risk based approach for understanding water, energy and emissions in irrigated agriculture," Agricultural Systems, Elsevier, vol. 104(9), pages 729-745.
    4. Lin, Xiaomin & Wang, Zhen & Li, Jiusheng, 2021. "Identifying the factors dominating the spatial distribution of water and salt in soil and cotton yield under arid environments of drip irrigation with different lateral lengths," Agricultural Water Management, Elsevier, vol. 250(C).
    5. Chauhdary, Junaid Nawaz & Bakhsh, Allah & Engel, Bernard A. & Ragab, Ragab, 2019. "Improving corn production by adopting efficient fertigation practices: Experimental and modeling approach," Agricultural Water Management, Elsevier, vol. 221(C), pages 449-461.
    6. Alrajhi, A. & Beecham, S. & Bolan, Nanthi S. & Hassanli, A., 2015. "Evaluation of soil chemical properties irrigated with recycled wastewater under partial root-zone drying irrigation for sustainable tomato production," Agricultural Water Management, Elsevier, vol. 161(C), pages 127-135.
    7. Aragüés, R. & Medina, E.T. & Martínez-Cob, A. & Faci, J., 2014. "Effects of deficit irrigation strategies on soil salinization and sodification in a semiarid drip-irrigated peach orchard," Agricultural Water Management, Elsevier, vol. 142(C), pages 1-9.
    8. Yasuor, Hagai & Yermiyahu, Uri & Ben-Gal, Alon, 2020. "Consequences of irrigation and fertigation of vegetable crops with variable quality water: Israel as a case study," Agricultural Water Management, Elsevier, vol. 242(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Minhas, P.S. & Ramos, Tiago B. & Ben-Gal, Alon & Pereira, Luis S., 2020. "Coping with salinity in irrigated agriculture: Crop evapotranspiration and water management issues," Agricultural Water Management, Elsevier, vol. 227(C).
    2. Farhadi Machekposhti, Mabood & Shahnazari, Ali & Z. Ahmadi, Mirkhalegh & Aghajani, Ghasem & Ritzema, Henk, 2017. "Effect of irrigation with sea water on soil salinity and yield of oleic sunflower," Agricultural Water Management, Elsevier, vol. 188(C), pages 69-78.
    3. Katerji, N. & van Hoorn, J. W. & Hamdy, A. & Mastrorilli, M., 2004. "Comparison of corn yield response to plant water stress caused by salinity and by drought," Agricultural Water Management, Elsevier, vol. 65(2), pages 95-101, March.
    4. Escarabajal-Henarejos, D. & Fernández-Pacheco, D.G. & Molina-Martínez, J.M. & Martínez-Molina, L. & Ruiz-Canales, A., 2015. "Selection of device to determine temperature gradients for estimating evapotranspiration using energy balance method," Agricultural Water Management, Elsevier, vol. 151(C), pages 136-147.
    5. Igbadun, Henry E. & Tarimo, Andrew K.P.R. & Salim, Baanda A. & Mahoo, Henry F., 2007. "Evaluation of selected crop water production functions for an irrigated maize crop," Agricultural Water Management, Elsevier, vol. 94(1-3), pages 1-10, December.
    6. Ferreyra, Raul E. & Aljaro, Agustin U. & Ruiz, Rafael Sch. & Rojas, Leonardo P. & Oster, J. D., 1997. "Behavior of 42 crop species grown in saline soils with high boron concentrations," Agricultural Water Management, Elsevier, vol. 34(2), pages 111-124, August.
    7. Hamilton, Andrew J. & Boland, Anne-Maree & Stevens, Daryl & Kelly, Jim & Radcliffe, John & Ziehrl, Angelika & Dillon, Peter & Paulin, Bob, 2005. "Position of the Australian horticultural industry with respect to the use of reclaimed water," Agricultural Water Management, Elsevier, vol. 71(3), pages 181-209, February.
    8. Panagiotis Christias & Ioannis N. Daliakopoulos & Thrassyvoulos Manios & Mariana Mocanu, 2020. "Comparison of Three Computational Approaches for Tree Crop Irrigation Decision Support," Mathematics, MDPI, vol. 8(5), pages 1-26, May.
    9. María del Pino Palacios-Diaz & Juan Ramón Fernández-Vera & Jose Manuel Hernández-Moreno & Regla Amorós & Vanessa Mendoza-Grimón, 2023. "Effect of Irrigation Management and Water Quality on Soil and Sorghum bicolor Payenne Yield in Cape Verde," Agriculture, MDPI, vol. 13(1), pages 1-18, January.
    10. Qadir, M. & Boers, Th. M. & Schubert, S. & Ghafoor, A. & Murtaza, G., 2003. "Agricultural water management in water-starved countries: challenges and opportunities," Agricultural Water Management, Elsevier, vol. 62(3), pages 165-185, October.
    11. Luminda Gunawardhana & So Kazama & Saeki Kawagoe, 2011. "Impact of Urbanization and Climate Change on Aquifer Thermal Regimes," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 25(13), pages 3247-3276, October.
    12. Mojid, M.A. & Murad, K.F.I. & Tabriz, S.S. & Wyseure, G.C.L., 2013. "An advantageous level of irrigation water salinity for wheat cultivation," Journal of the Bangladesh Agricultural University, Bangladesh Agricultural University Research System (BAURES), vol. 11.
    13. Dinpashoh, Yagob, 2006. "Study of reference crop evapotranspiration in I.R. of Iran," Agricultural Water Management, Elsevier, vol. 84(1-2), pages 123-129, July.
    14. Raes, Dirk & Geerts, Sam & Kipkorir, Emmanuel & Wellens, Joost & Sahli, Ali, 2006. "Simulation of yield decline as a result of water stress with a robust soil water balance model," Agricultural Water Management, Elsevier, vol. 81(3), pages 335-357, March.
    15. Gheysari, Mahdi & Pirnajmedin, Fatemeh & Movahedrad, Hamid & Majidi, Mohammad Mahdi & Zareian, Mohammad Javad, 2021. "Crop yield and irrigation water productivity of silage maize under two water stress strategies in semi-arid environment: Two different pot and field experiments," Agricultural Water Management, Elsevier, vol. 255(C).
    16. Shiri, Jalal, 2017. "Evaluation of FAO56-PM, empirical, semi-empirical and gene expression programming approaches for estimating daily reference evapotranspiration in hyper-arid regions of Iran," Agricultural Water Management, Elsevier, vol. 188(C), pages 101-114.
    17. Foster, T. & Brozović, N., 2018. "Simulating Crop-Water Production Functions Using Crop Growth Models to Support Water Policy Assessments," Ecological Economics, Elsevier, vol. 152(C), pages 9-21.
    18. Barron, Jennie & Okwach, George, 2005. "Run-off water harvesting for dry spell mitigation in maize (Zea mays L.): results from on-farm research in semi-arid Kenya," Agricultural Water Management, Elsevier, vol. 74(1), pages 1-21, May.
    19. Tedeschi, A. & Lavini, A. & Riccardi, M. & Pulvento, C. & d'Andria, R., 2011. "Melon crops (Cucumis melo L., cv. Tendral) grown in a mediterranean environment under saline-sodic conditions: Part I. Yield and quality," Agricultural Water Management, Elsevier, vol. 98(9), pages 1329-1338, July.
    20. Bedbabis, Saida & Trigui, Dhouha & Ben Ahmed, Chedlia & Clodoveo, Maria Lisa & Camposeo, Salvatore & Vivaldi, Gaetano Alessandro & Ben Rouina, Béchir, 2015. "Long-terms effects of irrigation with treated municipal wastewater on soil, yield and olive oil quality," Agricultural Water Management, Elsevier, vol. 160(C), pages 14-21.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:85:y:2006:i:3:p:233-242. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.