IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v63y2003i1p37-56.html
   My bibliography  Save this article

Effective management of irrigation water for wheat under stressed conditions

Author

Listed:
  • Panda, R. K.
  • Behera, S. K.
  • Kashyap, P. S.

Abstract

No abstract is available for this item.

Suggested Citation

  • Panda, R. K. & Behera, S. K. & Kashyap, P. S., 2003. "Effective management of irrigation water for wheat under stressed conditions," Agricultural Water Management, Elsevier, vol. 63(1), pages 37-56, November.
  • Handle: RePEc:eee:agiwat:v:63:y:2003:i:1:p:37-56
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378-3774(03)00099-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Reddy, C. Raghava & Reddy, S. Rami, 1993. "Scheduling irrigation for peanuts with variable amounts of available water," Agricultural Water Management, Elsevier, vol. 23(1), pages 1-9, March.
    2. Alderfasi, Ali Abdullah & Nielsen, David C., 2001. "Use of crop water stress index for monitoring water status and scheduling irrigation in wheat," Agricultural Water Management, Elsevier, vol. 47(1), pages 69-75, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kundu, M. & Chakraborty, P.K. & Mukherjee, A. & Sarkar, S., 2008. "Influence of irrigation frequencies and phosphate fertilization on actual evapotranspiration rate, yield and water use pattern of rajmash (Phaseolus vulgaris L.)," Agricultural Water Management, Elsevier, vol. 95(4), pages 383-390, April.
    2. Gontia, N.K. & Tiwari, K.N., 2008. "Development of crop water stress index of wheat crop for scheduling irrigation using infrared thermometry," Agricultural Water Management, Elsevier, vol. 95(10), pages 1144-1152, October.
    3. Kundu, M. & Sarkar, S., 2009. "Growth and evapotranspiration pattern of rajmash (Phaseolus vulgaris L.) under varying irrigation schedules and phosphate levels in a hot sub-humid climate," Agricultural Water Management, Elsevier, vol. 96(8), pages 1268-1274, August.
    4. Arora, V.K. & Singh, Harbakhshinder & Singh, Bijay, 2007. "Analyzing wheat productivity responses to climatic, irrigation and fertilizer-nitrogen regimes in a semi-arid sub-tropical environment using the CERES-Wheat model," Agricultural Water Management, Elsevier, vol. 94(1-3), pages 22-30, December.
    5. Ali, M.H. & Hoque, M.R. & Hassan, A.A. & Khair, A., 2007. "Effects of deficit irrigation on yield, water productivity, and economic returns of wheat," Agricultural Water Management, Elsevier, vol. 92(3), pages 151-161, September.
    6. Meena, Raj Pal & Karnam, Venkatesh & Tripathi, S.C. & Jha, Ankita & Sharma, R.K. & Singh, G.P., 2019. "Irrigation management strategies in wheat for efficient water use in the regions of depleting water resources," Agricultural Water Management, Elsevier, vol. 214(C), pages 38-46.
    7. Mosaffa, Hamid Reza & Sepaskhah, Ali Reza, 2019. "Performance of irrigation regimes and water salinity on winter wheat as influenced by planting methods," Agricultural Water Management, Elsevier, vol. 216(C), pages 444-456.
    8. Panda, R. K. & Behera, S. K. & Kashyap, P. S., 2004. "Effective management of irrigation water for maize under stressed conditions," Agricultural Water Management, Elsevier, vol. 66(3), pages 181-203, May.
    9. M. Habibi Davijani & M. E. Banihabib & A. Nadjafzadeh Anvar & S. R. Hashemi, 2016. "Multi-Objective Optimization Model for the Allocation of Water Resources in Arid Regions Based on the Maximization of Socioeconomic Efficiency," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 30(3), pages 927-946, February.
    10. Poddar, Ratneswar & Acharjee, P.U. & Bhattacharyya, K. & Patra, S.K., 2022. "Effect of irrigation regime and varietal selection on the yield, water productivity, energy indices and economics of rice production in the lower Gangetic Plains of Eastern India," Agricultural Water Management, Elsevier, vol. 262(C).
    11. Jiang, Yiwen & Zhang, Lanhui & Zhang, Baoqing & He, Chansheng & Jin, Xin & Bai, Xiao, 2016. "Modeling irrigation management for water conservation by DSSAT-maize model in arid northwestern China," Agricultural Water Management, Elsevier, vol. 177(C), pages 37-45.
    12. Shirazi, Sana Zeeshan & Mei, Xurong & Liu, Buchun & Liu, Yuan, 2021. "Assessment of the AquaCrop Model under different irrigation scenarios in the North China Plain," Agricultural Water Management, Elsevier, vol. 257(C).
    13. Zhang, Xiaoyu & Zhang, Xiying & Liu, Xiuwei & Shao, Liwei & Sun, Hongyong & Chen, Suying, 2015. "Incorporating root distribution factor to evaluate soil water status for winter wheat," Agricultural Water Management, Elsevier, vol. 153(C), pages 32-41.
    14. Lobell, David B. & Ortiz-Monasterio, J. Ivan, 2006. "Evaluating strategies for improved water use in spring wheat with CERES," Agricultural Water Management, Elsevier, vol. 84(3), pages 249-258, August.
    15. Behera, S.K. & Panda, R.K., 2009. "Integrated management of irrigation water and fertilizers for wheat crop using field experiments and simulation modeling," Agricultural Water Management, Elsevier, vol. 96(11), pages 1532-1540, November.
    16. Budy P. Resosudarmo & Kimlong Chheng, 2021. "Irrigation inequality, rice farming productivity and food insecurity in rural Cambodia," Departmental Working Papers 2021-19, The Australian National University, Arndt-Corden Department of Economics.
    17. Utset, Angel & Velicia, Herminio & del Rio, Blanca & Morillo, Rodrigo & Centeno, Jose Antonio & Martinez, Juan Carlos, 2007. "Calibrating and validating an agrohydrological model to simulate sugarbeet water use under mediterranean conditions," Agricultural Water Management, Elsevier, vol. 94(1-3), pages 11-21, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Erdem, Yesim & Arin, Levent & Erdem, Tolga & Polat, Serdar & Deveci, Murat & Okursoy, Hakan & Gültas, Hüseyin T., 2010. "Crop water stress index for assessing irrigation scheduling of drip irrigated broccoli (Brassica oleracea L. var. italica)," Agricultural Water Management, Elsevier, vol. 98(1), pages 148-156, December.
    2. Vantyghem, Mathilde & Merckx, Roel & Stevens, Bert & Hood-Nowotny, Rebecca & Swennen, Rony & Dercon, Gerd, 2022. "The potential of stable carbon isotope ratios and leaf temperature as proxies for drought stress in banana under field conditions," Agricultural Water Management, Elsevier, vol. 260(C).
    3. Kashyap, P. S. & Panda, R. K., 2003. "Effect of irrigation scheduling on potato crop parameters under water stressed conditions," Agricultural Water Management, Elsevier, vol. 59(1), pages 49-66, March.
    4. Daryanto, Stefani & Wang, Lixin & Jacinthe, Pierre-André, 2017. "Global synthesis of drought effects on cereal, legume, tuber and root crops production: A review," Agricultural Water Management, Elsevier, vol. 179(C), pages 18-33.
    5. Al-Kayssi, A.W. & Shihab, R.M. & Mustafa, S.H., 2011. "Impact of soil water stress on Nigellone oil content of black cumin seeds grown in calcareous-gypsifereous soils," Agricultural Water Management, Elsevier, vol. 100(1), pages 46-57.
    6. Katimbo, Abia & Rudnick, Daran R. & DeJonge, Kendall C. & Lo, Tsz Him & Qiao, Xin & Franz, Trenton E. & Nakabuye, Hope Njuki & Duan, Jiaming, 2022. "Crop water stress index computation approaches and their sensitivity to soil water dynamics," Agricultural Water Management, Elsevier, vol. 266(C).
    7. Lebourgeois, V. & Chopart, J.-L. & Bégué, A. & Le Mézo, L., 2010. "Towards using a thermal infrared index combined with water balance modelling to monitor sugarcane irrigation in a tropical environment," Agricultural Water Management, Elsevier, vol. 97(1), pages 75-82, January.
    8. Mandal, K.G. & Thakur, A.K. & Mohanty, S., 2019. "Paired-row planting and furrow irrigation increased light interception, pod yield and water use efficiency of groundnut in a hot sub-humid climate," Agricultural Water Management, Elsevier, vol. 213(C), pages 968-977.
    9. Fang, Q.X. & Ma, L. & Green, T.R. & Yu, Q. & Wang, T.D. & Ahuja, L.R., 2010. "Water resources and water use efficiency in the North China Plain: Current status and agronomic management options," Agricultural Water Management, Elsevier, vol. 97(8), pages 1102-1116, August.
    10. Yuan, Guofu & Luo, Yi & Sun, Xiaomin & Tang, Dengyin, 2004. "Evaluation of a crop water stress index for detecting water stress in winter wheat in the North China Plain," Agricultural Water Management, Elsevier, vol. 64(1), pages 29-40, January.
    11. Durigon, Angelica & de Jong van Lier, Quirijn, 2013. "Canopy temperature versus soil water pressure head for the prediction of crop water stress," Agricultural Water Management, Elsevier, vol. 127(C), pages 1-6.
    12. Mukherjee, Subham & Nandi, Ramprosad & Kundu, Arnab & Bandyopadhyay, Prasanta Kumar & Nalia, Arpita & Ghatak, Priyanka & Nath, Rajib, 2022. "Soil water stress and physiological responses of chickpea (Cicer arietinum L.) subject to tillage and irrigation management in lower Gangetic plain," Agricultural Water Management, Elsevier, vol. 263(C).
    13. Liu, Cong & Li, Kaiwei & Zhang, Jiquan & Guga, Suri & Wang, Rui & Liu, Xingpeng & Tong, Zhijun, 2023. "Dynamic risk assessment of waterlogging disaster to spring peanut (Arachis hypogaea L.) in Henan Province, China," Agricultural Water Management, Elsevier, vol. 277(C).
    14. Ved Parkash & Sukhbir Singh, 2020. "A Review on Potential Plant-Based Water Stress Indicators for Vegetable Crops," Sustainability, MDPI, vol. 12(10), pages 1-28, May.
    15. Candogan, Burak Nazmi & Sincik, Mehmet & Buyukcangaz, Hakan & Demirtas, Cigdem & Goksoy, Abdurrahim Tanju & Yazgan, Senih, 2013. "Yield, quality and crop water stress index relationships for deficit-irrigated soybean [Glycine max (L.) Merr.] in sub-humid climatic conditions," Agricultural Water Management, Elsevier, vol. 118(C), pages 113-121.
    16. Li, L. & Nielsen, D.C. & Yu, Q. & Ma, L. & Ahuja, L.R., 2010. "Evaluating the Crop Water Stress Index and its correlation with latent heat and CO2 fluxes over winter wheat and maize in the North China plain," Agricultural Water Management, Elsevier, vol. 97(8), pages 1146-1155, August.
    17. Liu, Xiuwei & Shao, Liwei & Sun, Hongyong & Chen, Suying & Zhang, Xiying, 2013. "Responses of yield and water use efficiency to irrigation amount decided by pan evaporation for winter wheat," Agricultural Water Management, Elsevier, vol. 129(C), pages 173-180.
    18. Kullberg, Emily G. & DeJonge, Kendall C. & Chávez, José L., 2017. "Evaluation of thermal remote sensing indices to estimate crop evapotranspiration coefficients," Agricultural Water Management, Elsevier, vol. 179(C), pages 64-73.
    19. Sezen, S. Metin & Yucel, Seral & Tekin, Servet & Yıldız, Mehmet, 2019. "Determination of optimum irrigation and effect of deficit irrigation strategies on yield and disease rate of peanut irrigated with drip system in Eastern Mediterranean," Agricultural Water Management, Elsevier, vol. 221(C), pages 211-219.
    20. Egea, Gregorio & Padilla-Díaz, Carmen M. & Martinez-Guanter, Jorge & Fernández, José E. & Pérez-Ruiz, Manuel, 2017. "Assessing a crop water stress index derived from aerial thermal imaging and infrared thermometry in super-high density olive orchards," Agricultural Water Management, Elsevier, vol. 187(C), pages 210-221.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:63:y:2003:i:1:p:37-56. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.