IDEAS home Printed from https://ideas.repec.org/a/eee/agiwat/v129y2013icp9-20.html
   My bibliography  Save this article

Cost-effectiveness analysis of water-saving irrigation technologies based on climate change response: A case study of China

Author

Listed:
  • Zou, Xiaoxia
  • Li, Yu’e
  • Cremades, Roger
  • Gao, Qingzhu
  • Wan, Yunfan
  • Qin, Xiaobo

Abstract

This study provides a cost-effectiveness analysis of four water-saving irrigation techniques that are widely implemented in China to address the impacts of climate change: sprinkler irrigation, micro-irrigation, low-pressure pipe irrigation and channel lining. The aim is to thoroughly understand the economic feasibility of water-saving irrigation as an approach to coping with climate change. Based on the cost-effectiveness analysis, this study finds that water-saving irrigation is cost-effective in coping with climate change, and has benefits for climate change mitigation and adaptation, and for sustainable economic development. For the cost-effectiveness ratio of mitigation and adaptation, only that of channel lining is negative (for mitigation is −43.02 to −73.41US$/t, for grain yield increase −34.35 to −20.13US$/t, and for water saving −0.020 to −0.012US$/m3). Sprinkler irrigation has the highest incremental cost for mitigation (476.03–691.64US$/t), because when sprinkler irrigation is used, there may be additional energy needs to meet water pressure requirements, which may increase greenhouse gas emissions compared to traditional irrigation. For mitigation, in districts where the pumping head for pressure is lower than the critical energy saving head, sprinkler irrigation should be avoided. Micro-irrigation has the highest incremental cost for adaptation followed by sprinkler irrigation and low-pressure pipe irrigation, but when considering the revenues from improved adaptation, all of the measures assessed are economically feasible. The results suggest that for mitigation and adaptation objectives, micro-irrigation performs best. From an economic perspective, channel lining is recommended. Therefore, a balanced development of channel lining and micro-irrigation according to different geographical conditions is recommended.

Suggested Citation

  • Zou, Xiaoxia & Li, Yu’e & Cremades, Roger & Gao, Qingzhu & Wan, Yunfan & Qin, Xiaobo, 2013. "Cost-effectiveness analysis of water-saving irrigation technologies based on climate change response: A case study of China," Agricultural Water Management, Elsevier, vol. 129(C), pages 9-20.
  • Handle: RePEc:eee:agiwat:v:129:y:2013:i:c:p:9-20
    DOI: 10.1016/j.agwat.2013.07.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378377413001856
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.agwat.2013.07.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yohannes, Fekadu & Tadesse, Teshome, 1998. "Effect of drip and furrow irrigation and plant spacing on yield of tomato at Dire Dawa, Ethiopia," Agricultural Water Management, Elsevier, vol. 35(3), pages 201-207, January.
    2. Rajak, Daleshwar & Manjunatha, M.V. & Rajkumar, G.R. & Hebbara, M. & Minhas, P.S., 2006. "Comparative effects of drip and furrow irrigation on the yield and water productivity of cotton (Gossypium hirsutum L.) in a saline and waterlogged vertisol," Agricultural Water Management, Elsevier, vol. 83(1-2), pages 30-36, May.
    3. Fang, Q.X. & Ma, L. & Green, T.R. & Yu, Q. & Wang, T.D. & Ahuja, L.R., 2010. "Water resources and water use efficiency in the North China Plain: Current status and agronomic management options," Agricultural Water Management, Elsevier, vol. 97(8), pages 1102-1116, August.
    4. Johannesson, Magnus, 1995. "Quality-adjusted life-years versus healthy-years equivalents -- A comment," Journal of Health Economics, Elsevier, vol. 14(1), pages 9-16, May.
    5. Wassmann, R. & Pathak, H., 2007. "Introducing greenhouse gas mitigation as a development objective in rice-based agriculture: II. Cost-benefit assessment for different technologies, regions and scales," Agricultural Systems, Elsevier, vol. 94(3), pages 826-840, June.
    6. World Bank, 2010. "Economics of Adaptation to Climate Change : Synthesis Report," World Bank Publications - Reports 12750, The World Bank Group.
    7. Xiaoxia Zou & Yu-e Li & Qingzhu Gao & Yunfan Wan, 2012. "How water saving irrigation contributes to climate change resilience—a case study of practices in China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 17(2), pages 111-132, February.
    8. -, 2009. "The economics of climate change," Sede Subregional de la CEPAL para el Caribe (Estudios e Investigaciones) 38679, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    9. Pathak, H. & Wassmann, R., 2007. "Introducing greenhouse gas mitigation as a development objective in rice-based agriculture: I. Generation of technical coefficients," Agricultural Systems, Elsevier, vol. 94(3), pages 807-825, June.
    10. Karimi, Poolad & Qureshi, Asad Sarwar & Bahramloo, Reza & Molden, David, 2012. "Reducing carbon emissions through improved irrigation and groundwater management: A case study from Iran," Agricultural Water Management, Elsevier, vol. 108(C), pages 52-60.
    11. Hoogwijk, Monique & Rue du Can, Stephane de la & Novikova, Aleksandra & Urge-Vorsatz, Diana & Blomen, Eliane & Blok, Kornelis, 2010. "Assessment of bottom-up sectoral and regional mitigation potentials," Energy Policy, Elsevier, vol. 38(6), pages 3044-3057, June.
    12. Perry, Chris, 2011. "Accounting for water use: Terminology and implications for saving water and increasing production," Agricultural Water Management, Elsevier, vol. 98(12), pages 1840-1846, October.
    13. Hanjra, Munir A. & Qureshi, M. Ejaz, 2010. "Global water crisis and future food security in an era of climate change," Food Policy, Elsevier, vol. 35(5), pages 365-377, October.
    14. Sims, Ralph E. H. & Rogner, Hans-Holger & Gregory, Ken, 2003. "Carbon emission and mitigation cost comparisons between fossil fuel, nuclear and renewable energy resources for electricity generation," Energy Policy, Elsevier, vol. 31(13), pages 1315-1326, October.
    15. Gustavsson, Leif & Borjesson, Pal, 1998. "CO2 mitigation cost: Bioenergy systems and natural gas systems with decarbonization," Energy Policy, Elsevier, vol. 26(9), pages 699-713, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiu, Guo Yu & Zhang, Xiaonan & Yu, Xiaohui & Zou, Zhendong, 2018. "The increasing effects in energy and GHG emission caused by groundwater level declines in North China’s main food production plain," Agricultural Water Management, Elsevier, vol. 203(C), pages 138-150.
    2. Zhang, Biao & Fu, Zetian & Wang, Jieqiong & Zhang, Lingxian, 2019. "Farmers’ adoption of water-saving irrigation technology alleviates water scarcity in metropolis suburbs: A case study of Beijing, China," Agricultural Water Management, Elsevier, vol. 212(C), pages 349-357.
    3. Golmohamadi, Hessam & Asadi, Amin, 2020. "A multi-stage stochastic energy management of responsive irrigation pumps in dynamic electricity markets," Applied Energy, Elsevier, vol. 265(C).
    4. Mi, Qiao & Li, Xiandong & Li, Xianmei & Yu, Guoxin & Gao, Jianzhong, 2021. "Cotton farmers' adaptation to arid climates: Waiting times to adopt water-saving technology," Agricultural Water Management, Elsevier, vol. 244(C).
    5. Huang, Qiuqiong & Wang, Jinxia & Li, Yumin, 2017. "Do water saving technologies save water? Empirical evidence from North China," Journal of Environmental Economics and Management, Elsevier, vol. 82(C), pages 1-16.
    6. Gurdeep Singh Malhi & Manpreet Kaur & Prashant Kaushik, 2021. "Impact of Climate Change on Agriculture and Its Mitigation Strategies: A Review," Sustainability, MDPI, vol. 13(3), pages 1-21, January.
    7. Pascual, Miquel & Villar, Josep M. & Rufat, Josep, 2016. "Water use efficiency in peach trees over a four-years experiment on the effects of irrigation and nitrogen application," Agricultural Water Management, Elsevier, vol. 164(P2), pages 253-266.
    8. Zhang, Fan & Cui, Ningbo & Guo, Shanshan & Yue, Qiong & Jiang, Shouzheng & Zhu, Bin & Yu, Xiuyun, 2023. "Irrigation strategy optimization in irrigation districts with seasonal agricultural drought in southwest China: A copula-based stochastic multiobjective approach," Agricultural Water Management, Elsevier, vol. 282(C).
    9. Liuyang Yao & Minjuan Zhao & Tao Xu, 2017. "China’s Water-Saving Irrigation Management System: Policy, Implementation, and Challenge," Sustainability, MDPI, vol. 9(12), pages 1-17, December.
    10. Potopová, V. & Trnka, M. & Vizina, A. & Semerádová, D. & Balek, J. & Chawdhery, M.R.A. & Musiolková, M. & Pavlík, P. & Možný, M. & Štěpánek, P. & Clothier, B., 2022. "Projection of 21st century irrigation water requirements for sensitive agricultural crop commodities across the Czech Republic," Agricultural Water Management, Elsevier, vol. 262(C).
    11. Chunxiao Song & Yue Rong & Ruifeng Liu & Les Oxley & Hengyun Ma, 2022. "Testing the Effects of Water-Saving Technologies Adapted to Drought: Empirical Evidence from the Huang-Huai-Hai Region in China," Land, MDPI, vol. 11(12), pages 1-22, November.
    12. Wang, Hong & Wang, Chenbing & Zhao, Xiumei & Wang, Falin, 2015. "Mulching increases water-use efficiency of peach production on the rainfed semiarid Loess Plateau of China," Agricultural Water Management, Elsevier, vol. 154(C), pages 20-28.
    13. Rosegrant, Mark W. & Koo, Jawoo & Cenacchi, Nicola & Ringler, Claudia & Robertson, Richard D. & Fisher, Myles & Cox, Cindy M. & Garrett, Karen & Perez, Nicostrato D. & Sabbagh, Pascale, 2014. "Food security in a world of natural resource scarcity: The role of agricultural technologies," IFPRI books, International Food Policy Research Institute (IFPRI), number 978-0-89629-847-7.
    14. Allouhi, A. & Buker, M.S. & El-houari, H. & Boharb, A. & Benzakour Amine, M. & Kousksou, T. & Jamil, A., 2019. "PV water pumping systems for domestic uses in remote areas: Sizing process, simulation and economic evaluation," Renewable Energy, Elsevier, vol. 132(C), pages 798-812.
    15. Yuan Chang & Guijun Li & Yuan Yao & Lixiao Zhang & Chang Yu, 2016. "Quantifying the Water-Energy-Food Nexus: Current Status and Trends," Energies, MDPI, vol. 9(2), pages 1-17, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaoxia Zou & Yu-e Li & Qingzhu Gao & Yunfan Wan, 2012. "How water saving irrigation contributes to climate change resilience—a case study of practices in China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 17(2), pages 111-132, February.
    2. Xiaoxia Zou & Yu’e Li & Kuo Li & Roger Cremades & Qingzhu Gao & Yunfan Wan & Xiaobo Qin, 2015. "Greenhouse gas emissions from agricultural irrigation in China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 20(2), pages 295-315, February.
    3. Benjamin Jones & Michael Keen & Jon Strand, 2013. "Fiscal implications of climate change," International Tax and Public Finance, Springer;International Institute of Public Finance, vol. 20(1), pages 29-70, February.
    4. Arun S. Malik & Stephen C. Smith, 2012. "Adaptation To Climate Change In Low-Income Countries: Lessons From Current Research And Needs From Future Research," Climate Change Economics (CCE), World Scientific Publishing Co. Pte. Ltd., vol. 3(02), pages 1-22.
    5. Yan, Nana & Wu, Bingfang & Perry, Chris & Zeng, Hongwei, 2015. "Assessing potential water savings in agriculture on the Hai Basin plain, China," Agricultural Water Management, Elsevier, vol. 154(C), pages 11-19.
    6. Giuseppe Lucio Gaeta & Stefano Ghinoi & Matteo Masotti & Francesco Silvestri, 2021. "Economics research and climate change. A Scopus-based bibliometric investigation," SEEDS Working Papers 0321, SEEDS, Sustainability Environmental Economics and Dynamics Studies, revised Apr 2021.
    7. Jiang, Qiang & Grafton, R. Quentin, 2012. "Economic effects of climate change in the Murray–Darling Basin, Australia," Agricultural Systems, Elsevier, vol. 110(C), pages 10-16.
    8. MacLeod, Michael & Moran, Dominic & Eory, Vera & Rees, R.M. & Barnes, Andrew & Topp, Cairistiona F.E. & Ball, Bruce & Hoad, Steve & Wall, Eileen & McVittie, Alistair & Pajot, Guillaume & Matthews, Rob, 2010. "Developing greenhouse gas marginal abatement cost curves for agricultural emissions from crops and soils in the UK," Agricultural Systems, Elsevier, vol. 103(4), pages 198-209, May.
    9. Jing Gu & Richard Schiere, 2011. "Working Paper 124 - Post-Crisis Prospects for China-Africa Relations," Working Paper Series 292, African Development Bank.
    10. Adamson, David & Loch, Adam, 2014. "Possible negative feedbacks from ‘gold-plating’ irrigation infrastructure," Agricultural Water Management, Elsevier, vol. 145(C), pages 134-144.
    11. Paul Watkiss, 2015. "A review of the economics of adaptation and climate-resilient development," GRI Working Papers 205, Grantham Research Institute on Climate Change and the Environment.
    12. Scrieciu, S. Şerban & Barker, Terry & Ackerman, Frank, 2013. "Pushing the boundaries of climate economics: critical issues to consider in climate policy analysis," Ecological Economics, Elsevier, vol. 85(C), pages 155-165.
    13. Patrice Dumas & Minh Ha-Duong, 2013. "Optimal growth with adaptation to climate change," Climatic Change, Springer, vol. 117(4), pages 691-710, April.
    14. Branker, K. & Pearce, J.M., 2010. "Financial return for government support of large-scale thin-film solar photovoltaic manufacturing in Canada," Energy Policy, Elsevier, vol. 38(8), pages 4291-4303, August.
    15. Breen, James P. & Donnellan, Trevor & Westhoff, Patrick C., 2012. "Reducing Greenhouse Gas Emissions from Irish Agriculture: A market-based approach," 2012 Conference, August 18-24, 2012, Foz do Iguacu, Brazil 130555, International Association of Agricultural Economists.
    16. Yu, Liuyang & Zhao, Xining & Gao, Xiaodong & Siddique, Kadambot H.M., 2020. "Improving/maintaining water-use efficiency and yield of wheat by deficit irrigation: A global meta-analysis," Agricultural Water Management, Elsevier, vol. 228(C).
    17. Kenny, R. & Law, C. & Pearce, J.M., 2010. "Towards real energy economics: Energy policy driven by life-cycle carbon emission," Energy Policy, Elsevier, vol. 38(4), pages 1969-1978, April.
    18. Barr, Rhona F. & Fankhauser, Samuel & Hamilton, Kirk, 2010. "The allocation of adaptation funding," LSE Research Online Documents on Economics 30161, London School of Economics and Political Science, LSE Library.
    19. Margulis, Sergio, 2016. "Vulnerabilidad y adaptación de las ciudades de América Latina al cambio climático," Documentos de Proyectos 41041, Naciones Unidas Comisión Económica para América Latina y el Caribe (CEPAL).
    20. Moon, Wanki, 2011. "Is agriculture compatible with free trade?," Ecological Economics, Elsevier, vol. 71(C), pages 13-24.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:129:y:2013:i:c:p:9-20. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.