IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v85y2005i1p1-18.html
   My bibliography  Save this article

Artificial neural networks for corn and soybean yield prediction

Author

Listed:
  • Kaul, Monisha
  • Hill, Robert L.
  • Walthall, Charles

Abstract

No abstract is available for this item.

Suggested Citation

  • Kaul, Monisha & Hill, Robert L. & Walthall, Charles, 2005. "Artificial neural networks for corn and soybean yield prediction," Agricultural Systems, Elsevier, vol. 85(1), pages 1-18, July.
  • Handle: RePEc:eee:agisys:v:85:y:2005:i:1:p:1-18
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308-521X(04)00139-8
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gbadegesin, Adeniyi, 1987. "Soil rating for crop production in the savanna belt of south-western Nigeria," Agricultural Systems, Elsevier, vol. 23(1), pages 27-42.
    2. Basso, B. & Ritchie, J. T. & Pierce, F. J. & Braga, R. P. & Jones, J. W., 2001. "Spatial validation of crop models for precision agriculture," Agricultural Systems, Elsevier, vol. 68(2), pages 97-112, May.
    3. Liang, T. & Akram Khan, M. & Manrique, L. A. & Parmar, Rajbir, 1986. "Rating land for crop introduction," Agricultural Systems, Elsevier, vol. 21(2), pages 107-127.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jalilov, Shokhrukh-Mirzo & Rahman, Wakilur & Palash, Salauddin & Jahan, Hasneen & Mainuddin, Mohammed & Ward, Frank A., 2022. "Exploring strategies to control the cost of food security: Evidence from Bangladesh," Agricultural Systems, Elsevier, vol. 196(C).
    2. Renato Domiciano Silva Rosado & Cosme Damião Cruz & Leiri Daiane Barili & José Eustáquio de Souza Carneiro & Pedro Crescêncio Souza Carneiro & Vinicius Quintão Carneiro & Jackson Tavela da Silva & Moy, 2020. "Artificial Neural Networks in the Prediction of Genetic Merit to Flowering Traits in Bean Cultivars," Agriculture, MDPI, vol. 10(12), pages 1-11, December.
    3. Emerson Rodolfo Abraham & João Gilberto Mendes dos Reis & Oduvaldo Vendrametto & Pedro Luiz de Oliveira Costa Neto & Rodrigo Carlo Toloi & Aguinaldo Eduardo de Souza & Marcos de Oliveira Morais, 2020. "Time Series Prediction with Artificial Neural Networks: An Analysis Using Brazilian Soybean Production," Agriculture, MDPI, vol. 10(10), pages 1-18, October.
    4. Xu, Chang & Katchova, Ani L., 2019. "Predicting Soybean Yield with NDVI Using a Flexible Fourier Transform Model," Journal of Agricultural and Applied Economics, Cambridge University Press, vol. 51(3), pages 402-416, August.
    5. Omolola M. Adisa & Joel O. Botai & Abiodun M. Adeola & Abubeker Hassen & Christina M. Botai & Daniel Darkey & Eyob Tesfamariam, 2019. "Application of Artificial Neural Network for Predicting Maize Production in South Africa," Sustainability, MDPI, vol. 11(4), pages 1-17, February.
    6. Kelvin López-Aguilar & Adalberto Benavides-Mendoza & Susana González-Morales & Antonio Juárez-Maldonado & Pamela Chiñas-Sánchez & Alvaro Morelos-Moreno, 2020. "Artificial Neural Network Modeling of Greenhouse Tomato Yield and Aerial Dry Matter," Agriculture, MDPI, vol. 10(4), pages 1-14, April.
    7. Szulczewski, Wieslaw & Zyromski, Andrzej & Biniak-Pieróg, Malgorzata & Machowczyk, Anna, 2010. "Modelling of the effect of dry periods on yielding of spring barley," Agricultural Water Management, Elsevier, vol. 97(5), pages 587-595, May.
    8. Jules F. Cacho & Jeremy Feinstein & Colleen R. Zumpf & Yuki Hamada & Daniel J. Lee & Nictor L. Namoi & DoKyoung Lee & Nicholas N. Boersma & Emily A. Heaton & John J. Quinn & Cristina Negri, 2023. "Predicting Biomass Yields of Advanced Switchgrass Cultivars for Bioenergy and Ecosystem Services Using Machine Learning," Energies, MDPI, vol. 16(10), pages 1-16, May.
    9. Pourmohammadali, Behrooz & Hosseinifard, Seyed Javad & Hassan Salehi, Mohammad & Shirani, Hossein & Esfandiarpour Boroujeni, Isa, 2019. "Effects of soil properties, water quality and management practices on pistachio yield in Rafsanjan region, southeast of Iran," Agricultural Water Management, Elsevier, vol. 213(C), pages 894-902.
    10. Srinivasagan N. Subhashree & C. Igathinathane & Adnan Akyuz & Md. Borhan & John Hendrickson & David Archer & Mark Liebig & David Toledo & Kevin Sedivec & Scott Kronberg & Jonathan Halvorson, 2023. "Tools for Predicting Forage Growth in Rangelands and Economic Analyses—A Systematic Review," Agriculture, MDPI, vol. 13(2), pages 1-30, February.
    11. Kuruguntu Mohan Krithika & Nachimuthu Maheswari & Manickam Sivagami, 2022. "Models for feature selection and efficient crop yield prediction in the groundnut production," Research in Agricultural Engineering, Czech Academy of Agricultural Sciences, vol. 68(3), pages 131-141.
    12. Jiménez, Daniel & Cock, James & Jarvis, Andy & Garcia, James & Satizábal, Héctor F. & Damme, Patrick Van & Pérez-Uribe, Andrés & Barreto-Sanz, Miguel A., 2011. "Interpretation of commercial production information: A case study of lulo (Solanum quitoense), an under-researched Andean fruit," Agricultural Systems, Elsevier, vol. 104(3), pages 258-270, March.
    13. Taheri-Rad, Alireza & Khojastehpour, Mehdi & Rohani, Abbas & Khoramdel, Surur & Nikkhah, Amin, 2017. "Energy flow modeling and predicting the yield of Iranian paddy cultivars using artificial neural networks," Energy, Elsevier, vol. 135(C), pages 405-412.
    14. Vlontzos, G. & Pardalos, P.M., 2017. "Assess and prognosticate green house gas emissions from agricultural production of EU countries, by implementing, DEA Window analysis and artificial neural networks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 155-162.
    15. Bazrafshan, Ommolbanin & Ehteram, Mohammad & Moshizi, Zahra Gerkaninezhad & Jamshidi, Sajad, 2022. "Evaluation and uncertainty assessment of wheat yield prediction by multilayer perceptron model with bayesian and copula bayesian approaches," Agricultural Water Management, Elsevier, vol. 273(C).
    16. Ji, Li-Qun, 2015. "An assessment of agricultural residue resources for liquid biofuel production in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 561-575.
    17. Patryk Hara & Magdalena Piekutowska & Gniewko Niedbała, 2021. "Selection of Independent Variables for Crop Yield Prediction Using Artificial Neural Network Models with Remote Sensing Data," Land, MDPI, vol. 10(6), pages 1-21, June.
    18. García-Alonso, Carlos R. & Torres-Jiménez, Mercedes & Hervás-Martínez, César, 2010. "Income prediction in the agrarian sector using product unit neural networks," European Journal of Operational Research, Elsevier, vol. 204(2), pages 355-365, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cock, James & Oberthür, Thomas & Isaacs, Camilo & Läderach, Peter Roman & Palma, Alberto & Carbonell, Javier & Victoria, Jorge & Watts, Geoff & Amaya, Alvaro & Collet, Laure & Lema, Germán & Anderson,, 2011. "Crop management based on field observations: Case studies in sugarcane and coffee," Agricultural Systems, Elsevier, vol. 104(9), pages 755-769.
    2. Pedersen, Michael Friis & Gyldengren, Jacob Glerup & Pedersen, Søren Marcus & Diamantopoulos, Efstathios & Gislum, René & Styczen, Merete Elisabeth, 2021. "A simulation of variable rate nitrogen application in winter wheat with soil and sensor information - An economic feasibility study," Agricultural Systems, Elsevier, vol. 192(C).
    3. Fei Li & Shuwen Zhang & Xinliang Xu & Jiuchun Yang & Qing Wang & Kun Bu & Liping Chang, 2015. "The Response of Grain Potential Productivity to Land Use Change: A Case Study in Western Jilin, China," Sustainability, MDPI, vol. 7(11), pages 1-16, November.
    4. Schlindwein, Sandro L. & Eulenstein, Frank & Lana, Marcos & Sieber, Stefan & Boulanger, Jean-Philippe & Guevara, Edgardo & Meira, Santiago & Gentile, Elvira & Bonatti, Michelle, 2015. "What Can Be Learned about the Adaptation Process of Farming Systems to Climate Dynamics Using Crop Models?," Sustainable Agriculture Research, Canadian Center of Science and Education, vol. 4(4).
    5. Perielathu Mathunny Mathews Author-Workplace- Scientist, Soil Chemistry, Division of Agronomy and Soil Sciences, India, 2016. "Soil Chemistry: A Way Ahead," Agricultural Research & Technology: Open Access Journal, Juniper Publishers Inc., vol. 2(4), pages 115-122, September.
    6. Leo, Stephen & De Antoni Migliorati, Massimiliano & Nguyen, Trung H. & Grace, Peter R., 2023. "Combining remote sensing-derived management zones and an auto-calibrated crop simulation model to determine optimal nitrogen fertilizer rates," Agricultural Systems, Elsevier, vol. 205(C).
    7. Tenreiro, Tomás R. & García-Vila, Margarita & Gómez, José A. & Jimenez-Berni, José A. & Fereres, Elías, 2020. "Water modelling approaches and opportunities to simulate spatial water variations at crop field level," Agricultural Water Management, Elsevier, vol. 240(C).
    8. Morrison, Kathryn T. & Nelson, Trisalyn A. & Ostry, Aleck S., 2011. "Methods for mapping local food production capacity from agricultural statistics," Agricultural Systems, Elsevier, vol. 104(6), pages 491-499, July.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:85:y:2005:i:1:p:1-18. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.