IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v104y2011i8p615-622.html
   My bibliography  Save this article

Analyzing the effects of risk and uncertainty on optimal tillage and nitrogen fertilizer intensity for field crops in Germany

Author

Listed:
  • Gandorfer, Markus
  • Pannell, David
  • Meyer-Aurich, Andreas

Abstract

This study provides a risk analysis of long-term field experiments in Germany (Bavaria) on various field crops (potato, wheat and corn), grown in rotation, under a variety of different tillage and nitrogen management systems. The field experiment provided yield and input data for the analysis, and was combined with market data relevant to the case-study region. The emphasis of the analysis is on the interaction between risk and tillage and nitrogen strategies. Over the whole rotation (corn-wheat-potato-wheat), conventional tillage combined with conventional nitrogen rates is optimal, both for risk-neutral and risk-averse farmers. Although less intensive management practices involve lower risk, the decrease in risk premium is not sufficient to alter the ranking of strategies, even for farmers with higher levels of risk aversion. Reducing nitrogen rates would be costly to farmers, especially under reduced or shallow tillage. Decoupled farm subsidies within the expected utility model show that even for a scenario with no subsidies our conclusions do not change.

Suggested Citation

  • Gandorfer, Markus & Pannell, David & Meyer-Aurich, Andreas, 2011. "Analyzing the effects of risk and uncertainty on optimal tillage and nitrogen fertilizer intensity for field crops in Germany," Agricultural Systems, Elsevier, vol. 104(8), pages 615-622, October.
  • Handle: RePEc:eee:agisys:v:104:y:2011:i:8:p:615-622
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308521X11000874
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. J. Brian Hardaker & James W. Richardson & Gudbrand Lien & Keith D. Schumann, 2004. "Stochastic efficiency analysis with risk aversion bounds: a simplified approach," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 48(2), pages 253-270, June.
    2. Predrag Rajsic & Alfons Weersink & Markus Gandorfer, 2009. "Risk and Nitrogen Application Levels," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 57(2), pages 223-239, June.
    3. K.B. Hamal & Jock R. Anderson, 1982. "A Note On Decreasing Absolute Risk Aversion Among Farmers In Nepal," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 26(3), pages 220-225, December.
    4. Dustin L. Pendell & Jeffery R. Williams & Scott B. Boyles & Charles W. Rice & Richard G. Nelson, 2007. "Soil Carbon Sequestration Strategies with Alternative Tillage and Nitrogen Sources under Risk," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 29(2), pages 247-268.
    5. Bardsley, Peter & Harris, Michael, 1987. "An Approach To The Econometric Estimation Of Attitudes To Risk In Agriculture," Australian Journal of Agricultural Economics, Australian Agricultural and Resource Economics Society, vol. 31(2), pages 1-15, August.
    6. H. Alan Love & Steven T. Buccola, 1991. "Joint Risk Preference-Technology Estimation with a Primal System," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 73(3), pages 765-774.
    7. Jutta Roosen & David A. Hennessy, 2003. "Tests for the Role of Risk Aversion on Input Use," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 85(1), pages 30-43.
    8. Szvetlana Acs & Paul Berentsen & Ruud Huirne & Marcel van Asseldonk, 2009. "Effect of yield and price risk on conversion from conventional to organic farming ," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 53(3), pages 393-411, July.
    9. G. Hanoch & H. Levy, 1969. "The Efficiency Analysis of Choices Involving Risk," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 36(3), pages 335-346.
    10. Carl H. Nelson & Paul V. Preckel, 1989. "The Conditional Beta Distribution as a Stochastic Production Function," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 71(2), pages 370-378.
    11. Hadar, Josef & Russell, William R, 1969. "Rules for Ordering Uncertain Prospects," American Economic Review, American Economic Association, vol. 59(1), pages 25-34, March.
    12. Pannell, David J. & Malcolm, Bill & Kingwell, Ross S., 2000. "Are we risking too much? Perspectives on risk in farm modelling," Agricultural Economics, Blackwell, vol. 23(1), pages 69-78, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Blog mentions

    As found by EconAcademics.org, the blog aggregator for Economics research:
    1. 312 – The economics of nitrogen in agriculture
      by David Pannell in Pannell Discussions on 2018-02-06 02:15:29

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Monjardino, Marta & McBeath, T. & Brennan, Lisa E. & Llewellyn, Rick S., 2012. "Are farmers in low-rainfall cropping regions under-fertilizing? An Australian case-study," 2012 Conference, August 18-24, 2012, Foz do Iguacu, Brazil 124976, International Association of Agricultural Economists.
    2. Uttam Khanal & Kerry J. Stott & Roger Armstrong & James G. Nuttall & Frank Henry & Brendan P. Christy & Meredith Mitchell & Penny A. Riffkin & Ashley J. Wallace & Malcolm McCaskill & Thabo Thayalakuma, 2021. "Intercropping—Evaluating the Advantages to Broadacre Systems," Agriculture, MDPI, vol. 11(5), pages 1-20, May.
    3. Monjardino, M. & McBeath, T. & Ouzman, J. & Llewellyn, R. & Jones, B., 2015. "Farmer risk-aversion limits closure of yield and profit gaps: A study of nitrogen management in the southern Australian wheatbelt," Agricultural Systems, Elsevier, vol. 137(C), pages 108-118.
    4. Monjardino, Marta & Harrison, Matthew T. & DeVoil, Peter & Rodriguez, Daniel & Sadras, Victor O., 2022. "Agronomic and on-farm infrastructure adaptations to manage economic risk in Australian irrigated broadacre systems: A case study," Agricultural Water Management, Elsevier, vol. 269(C).
    5. Zewdu Ayalew Abro & Moti Jaleta & Hailemariam Teklewold, 2018. "Does Intensive Tillage Enhance Productivity and Reduce Risk Exposure? Panel Data Evidence from Smallholders’ Agriculture in Ethiopia," Journal of Agricultural Economics, Wiley Blackwell, vol. 69(3), pages 756-776, September.
    6. Camille Tevenart & Marielle Brunette, 2021. "Role of Farmers’ Risk and Ambiguity Preferences on Fertilization Decisions: An Experiment," Sustainability, MDPI, vol. 13(17), pages 1-27, August.
    7. Kerry J. Stott & Brendan Christy & Malcolm McCaskill & Kurt K. Benke & Penny Riffkin & Garry J. O'Leary & Robert Norton, 2020. "Integrating crop modelling and production economics to investigate multiple nutrient deficiencies and yield gaps," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(3), pages 655-676, July.
    8. Monjardino, Marta & McBeath, T. & Brennan, Lisa E. & Llewellyn, Rick S., 2012. "Revisiting N fertilisation rates in low-rainfall grain cropping regions of Australia: A risk analysis," 2012 Conference (56th), February 7-10, 2012, Fremantle, Australia 124339, Australian Agricultural and Resource Economics Society.
    9. Meyer-Aurich, Andreas & Gandorfer, Markus & Trost, Benjamin & Ellmer, Frank & Baumecker, Michael, 2016. "Risk efficiency of irrigation to cereals in northeast Germany with respect to nitrogen fertilizer," Agricultural Systems, Elsevier, vol. 149(C), pages 132-138.
    10. Benjamin Dequiedt & Emmanuel Servonnat, 2016. "Risk as a limit or an opportunity to mitigate GHG emissions? The case of fertilisation in agriculture," Working Papers 1606, Chaire Economie du climat.
    11. Komarek, Adam M. & MacAulay, T. Gordon, 2013. "Farmer responses to changing risk aversion, enterprise variability and resource endowments," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 57(3).
    12. Wakeyo, Mekonnen B. & Gardebroek, Cornelis, 2013. "Does water harvesting induce fertilizer use among smallholders? Evidence from Ethiopia," Agricultural Systems, Elsevier, vol. 114(C), pages 54-63.
    13. Hasibuan, Abdul Muis & Gregg, Daniel & Stringer, Randy, 2022. "Risk preferences, intra-household dynamics and spatial effects on chemical inputs use: Case of small-scale citrus farmers in Indonesia," Land Use Policy, Elsevier, vol. 122(C).
    14. Stott, Kerry J. & Christy, Brendan & McCaskill, Malcolm & Riffkin, Penny & O’Leary, Garry J. & Norton, Robert, 2020. "Integrating crop modelling and production economics to investigate multiple nutrient deficiencies and yield gaps," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(3), July.
    15. Meyer-Aurich, Andreas & Karatay, Yusuf Nadi, 2019. "Effects of uncertainty and farmers' risk aversion on optimal N fertilizer supply in wheat production in Germany," Agricultural Systems, Elsevier, vol. 173(C), pages 130-139.
    16. Komarek, Adam M. & Bell, Lindsay W. & Whish, Jeremy P.M. & Robertson, Michael J. & Bellotti, William D., 2015. "Whole-farm economic, risk and resource-use trade-offs associated with integrating forages into crop–livestock systems in western China," Agricultural Systems, Elsevier, vol. 133(C), pages 63-72.
    17. Nordblom, Thomas L. & Hutchings, Timothy R. & Godfrey, Sosheel S. & Schefe, Cassandra R., 2021. "Precision variable rate nitrogen for dryland farming on waterlogging Riverine Plains of Southeast Australia?," Agricultural Systems, Elsevier, vol. 186(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Monjardino, M. & McBeath, T. & Ouzman, J. & Llewellyn, R. & Jones, B., 2015. "Farmer risk-aversion limits closure of yield and profit gaps: A study of nitrogen management in the southern Australian wheatbelt," Agricultural Systems, Elsevier, vol. 137(C), pages 108-118.
    2. Chai, Yuan & Pannell, David J. & Pardey, Philip G., 2022. "Reducing Water Pollution from Nitrogen Fertilizer: Revisiting Insights from Production Economics," Staff Papers 320519, University of Minnesota, Department of Applied Economics.
    3. Monjardino, Marta & McBeath, T. & Brennan, Lisa E. & Llewellyn, Rick S., 2012. "Are farmers in low-rainfall cropping regions under-fertilizing? An Australian case-study," 2012 Conference, August 18-24, 2012, Foz do Iguacu, Brazil 124976, International Association of Agricultural Economists.
    4. Predrag Rajsic & Alfons Weersink & Markus Gandorfer, 2009. "Risk and Nitrogen Application Levels," Canadian Journal of Agricultural Economics/Revue canadienne d'agroeconomie, Canadian Agricultural Economics Society/Societe canadienne d'agroeconomie, vol. 57(2), pages 223-239, June.
    5. Monjardino, Marta & McBeath, T. & Brennan, Lisa E. & Llewellyn, Rick S., 2012. "Revisiting N fertilisation rates in low-rainfall grain cropping regions of Australia: A risk analysis," 2012 Conference (56th), February 7-10, 2012, Fremantle, Australia 124339, Australian Agricultural and Resource Economics Society.
    6. Meyer-Aurich, Andreas & Karatay, Yusuf Nadi, 2019. "Effects of uncertainty and farmers' risk aversion on optimal N fertilizer supply in wheat production in Germany," Agricultural Systems, Elsevier, vol. 173(C), pages 130-139.
    7. Schumann, Keith D. & Richardson, James W. & Lien, Gudbrand D. & Hardaker, J. Brian, 2004. "Stochastic Efficiency Analysis Using Multiple Utility Functions," 2004 Annual meeting, August 1-4, Denver, CO 19957, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    8. Lien, G. & Stordal, S. & Hardaker, J.B. & Asheim, L.J., 2007. "Risk aversion and optimal forest replanting: A stochastic efficiency study," European Journal of Operational Research, Elsevier, vol. 181(3), pages 1584-1592, September.
    9. Liu, Yangxuan & Langemeier, Michael & Small, Ian & Joseph, Laura & Fry, William, 2015. "Risk management strategies using potato precision farming technology," 2015 AAEA & WAEA Joint Annual Meeting, July 26-28, San Francisco, California 205417, Agricultural and Applied Economics Association.
    10. Yangxuan Liu & Michael R. Langemeier & Ian M. Small & Laura Joseph & William E. Fry & Jean B. Ristaino & Amanda Saville & Benjamin M. Gramig & Paul V. Preckel, 2018. "A Risk Analysis of Precision Agriculture Technology to Manage Tomato Late Blight," Sustainability, MDPI, vol. 10(9), pages 1-19, August.
    11. Ragnar Tveteras & Ola Flaten & Gudbrand Lien, 2011. "Production risk in multi-output industries: estimates from Norwegian dairy farms," Applied Economics, Taylor & Francis Journals, vol. 43(28), pages 4403-4414.
    12. Schumann, Keith D., 2011. "Semi-nonparametric test of second degree stochastic dominance with respect to a function," Journal of Econometrics, Elsevier, vol. 162(1), pages 71-78, May.
    13. Hildebrandt, Patrick & Knoke, Thomas, 2011. "Investment decisions under uncertainty--A methodological review on forest science studies," Forest Policy and Economics, Elsevier, vol. 13(1), pages 1-15, January.
    14. Upendram, Sreedhar & Wibowo, Rulianda & Peterson, Jeffrey M., 2015. "Irrigation technology upgrade and water savings on the Kansas High Plains aquifer," 2015 Annual Meeting, January 31-February 3, 2015, Atlanta, Georgia 197036, Southern Agricultural Economics Association.
    15. Uttam Khanal & Kerry J. Stott & Roger Armstrong & James G. Nuttall & Frank Henry & Brendan P. Christy & Meredith Mitchell & Penny A. Riffkin & Ashley J. Wallace & Malcolm McCaskill & Thabo Thayalakuma, 2021. "Intercropping—Evaluating the Advantages to Broadacre Systems," Agriculture, MDPI, vol. 11(5), pages 1-20, May.
    16. Oliver Linton & Esfandiar Maasoumi & Yoon-Jae Wang, 2002. "Consistent testing for stochastic dominance: a subsampling approach," CeMMAP working papers 03/02, Institute for Fiscal Studies.
    17. Asci, Serhat & Borisova, Tatiana & VanSickle, John J., 2015. "Role of economics in developing fertilizer best management practices," Agricultural Water Management, Elsevier, vol. 152(C), pages 251-261.
    18. Hooi Hooi Lean & Michael McAleer & Wing-Keung Wong, 2013. "Risk-averse and Risk-seeking Investor Preferences for Oil Spot and Futures," Documentos de Trabajo del ICAE 2013-31, Universidad Complutense de Madrid, Facultad de Ciencias Económicas y Empresariales, Instituto Complutense de Análisis Económico, revised Aug 2013.
    19. Moshe Levy & Haim Levy, 2013. "Prospect Theory: Much Ado About Nothing?," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 7, pages 129-144, World Scientific Publishing Co. Pte. Ltd..
    20. Heller, Yuval & Schreiber, Amnon, 2020. "Short-term investments and indices of risk," Theoretical Economics, Econometric Society, vol. 15(3), July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:104:y:2011:i:8:p:615-622. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.