IDEAS home Printed from https://ideas.repec.org/a/eee/agisys/v103y2010i9p599-608.html
   My bibliography  Save this article

Life cycle assessment of high- and low-profitability commodity and deep-bedded niche swine production systems in the Upper Midwestern United States

Author

Listed:
  • Pelletier, N.
  • Lammers, P.
  • Stender, D.
  • Pirog, R.

Abstract

We used ISO-compliant life cycle assessment to evaluate the comparative environmental performance of high- and low-profitability commodity and deep-bedded niche swine production systems in the Upper Midwestern United States. Specifically, we evaluated the contributions of feed production, in-barn energy use, manure management, and piglet production to farm-gate life cycle energy use, ecological footprint, and greenhouse gas (GHG) and eutrophying emissions per animal produced and per live-weight kg. We found that commodity systems generally outperform deep-bedded niche systems for these criteria, but that significant overlap occurs in the range of impacts characteristic of high- and low-profitability production between systems. Given the non-optimized status of current deep-bedded niche relative to commodity production, we suggest that optimizing niche systems through improvements in feed and sow herd efficiency holds significant environmental performance improvement potential. Drivers of impacts differed between commodity and deep-bedded niche systems. Feed production was the key consideration in both, but proportionally more important in niche production due to lower feed use efficiencies. Liquid manure management in commodity production strongly influenced GHG emissions, whereas solid manure management increased eutrophication potential due to outdoor storage in deep-bedded niche production. We further observe an interesting but highly imperfect relationship between economic and environmental performance measures, where profitability tracks well with resource (in particular, feed) throughput, but only indirectly with emissions intensity.

Suggested Citation

  • Pelletier, N. & Lammers, P. & Stender, D. & Pirog, R., 2010. "Life cycle assessment of high- and low-profitability commodity and deep-bedded niche swine production systems in the Upper Midwestern United States," Agricultural Systems, Elsevier, vol. 103(9), pages 599-608, November.
  • Handle: RePEc:eee:agisys:v:103:y:2010:i:9:p:599-608
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0308-521X(10)00092-2
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lammers, P.J. & Kenealy, J.B. & Kliebenstein, James & Harmon, Jay D. & Helmers, Matthew J. & Honeyman, Mark, 2010. "Nonsolar Energy Use and One-Hundred-Year Global Warming Potential of Iowa Swine Feedstuffs and Feeding Strategies," Staff General Research Papers Archive 31866, Iowa State University, Department of Economics.
    2. Lammers, P.J. & Honeyman, M.S. & Harmon, J.D. & Helmers, M.J., 2010. "Energy and carbon inventory of Iowa swine production facilities," Agricultural Systems, Elsevier, vol. 103(8), pages 551-561, October.
    3. Pelletier, Nathan & Pirog, Rich & Rasmussen, Rebecca, 2010. "Comparative life cycle environmental impacts of three beef production strategies in the Upper Midwestern United States," Agricultural Systems, Elsevier, vol. 103(6), pages 380-389, July.
    4. Marc L. Imhoff & Lahouari Bounoua & Taylor Ricketts & Colby Loucks & Robert Harriss & William T. Lawrence, 2004. "Global patterns in human consumption of net primary production," Nature, Nature, vol. 429(6994), pages 870-873, June.
    5. Krausmann, Fridolin & Erb, Karl-Heinz & Gingrich, Simone & Lauk, Christian & Haberl, Helmut, 2008. "Global patterns of socioeconomic biomass flows in the year 2000: A comprehensive assessment of supply, consumption and constraints," Ecological Economics, Elsevier, vol. 65(3), pages 471-487, April.
    6. Pelletier, N., 2008. "Environmental performance in the US broiler poultry sector: Life cycle energy use and greenhouse gas, ozone depleting, acidifying and eutrophying emissions," Agricultural Systems, Elsevier, vol. 98(2), pages 67-73, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Stefan J. Hörtenhuber & Günther Schauberger & Christian Mikovits & Martin Schönhart & Johannes Baumgartner & Knut Niebuhr & Martin Piringer & Ivonne Anders & Konrad Andre & Isabel Hennig-Pauka & Werne, 2020. "The Effect of Climate Change-Induced Temperature Increase on Performance and Environmental Impact of Intensive Pig Production Systems," Sustainability, MDPI, vol. 12(22), pages 1-17, November.
    2. Gwendolyn Rudolph & Stefan Hörtenhuber & Davide Bochicchio & Gillian Butler & Roland Brandhofer & Sabine Dippel & Jean Yves Dourmad & Sandra Edwards & Barbara Früh & Matthias Meier & Armelle Prunier &, 2018. "Effect of Three Husbandry Systems on Environmental Impact of Organic Pigs," Sustainability, MDPI, vol. 10(10), pages 1-20, October.
    3. Javier García-Gudiño & Alessandra N. T. R. Monteiro & Sandrine Espagnol & Isabel Blanco-Penedo & Florence Garcia-Launay, 2020. "Life Cycle Assessment of Iberian Traditional Pig Production System in Spain," Sustainability, MDPI, vol. 12(2), pages 1-18, January.
    4. Ludvík Friebel & Jana Friebelová & Naděžda Kernerová, 2016. "Stochastic Analysis of Profitability of the Pig Breeding Process," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 64(1), pages 255-264.
    5. Stone, James J. & Dollarhide, Christopher R. & Benning, Jennifer L. & Gregg Carlson, C. & Clay, David E., 2012. "The life cycle impacts of feed for modern grow-finish Northern Great Plains US swine production," Agricultural Systems, Elsevier, vol. 106(1), pages 1-10.
    6. Mayra L. Pazmiño & Angel D. Ramirez, 2021. "Life Cycle Assessment as a Methodological Framework for the Evaluation of the Environmental Sustainability of Pig and Pork Production in Ecuador," Sustainability, MDPI, vol. 13(21), pages 1-21, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Erb, Karl-Heinz & Krausmann, Fridolin & Lucht, Wolfgang & Haberl, Helmut, 2009. "Embodied HANPP: Mapping the spatial disconnect between global biomass production and consumption," Ecological Economics, Elsevier, vol. 69(2), pages 328-334, December.
    2. Lauk, Christian & Erb, Karl-Heinz, 2009. "Biomass consumed in anthropogenic vegetation fires: Global patterns and processes," Ecological Economics, Elsevier, vol. 69(2), pages 301-309, December.
    3. Raymond L. Desjardins & Devon E. Worth & Xavier P. C. Vergé & Dominique Maxime & Jim Dyer & Darrel Cerkowniak, 2012. "Carbon Footprint of Beef Cattle," Sustainability, MDPI, vol. 4(12), pages 1-23, December.
    4. Suman Paudel & Gustavo A. Ovando-Montejo & Christopher L. Lant, 2021. "Human Appropriation of Net Primary Production: From a Planet to a Pixel," Sustainability, MDPI, vol. 13(15), pages 1-12, August.
    5. Kohlheb, Norbert & Krausmann, Fridolin, 2009. "Land use change, biomass production and HANPP: The case of Hungary 1961-2005," Ecological Economics, Elsevier, vol. 69(2), pages 292-300, December.
    6. Zifei Liu & Yang Liu, 2018. "Mitigation of greenhouse gas emissions from animal production," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 8(4), pages 627-638, August.
    7. Stone, James J. & Dollarhide, Christopher R. & Benning, Jennifer L. & Gregg Carlson, C. & Clay, David E., 2012. "The life cycle impacts of feed for modern grow-finish Northern Great Plains US swine production," Agricultural Systems, Elsevier, vol. 106(1), pages 1-10.
    8. Haberl, Helmut & Kastner, Thomas & Schaffartzik, Anke & Ludwiczek, Nikolaus & Erb, Karl-Heinz, 2012. "Global effects of national biomass production and consumption: Austria's embodied HANPP related to agricultural biomass in the year 2000," Ecological Economics, Elsevier, vol. 84(C), pages 66-73.
    9. Soto, David & Infante-Amate, Juan & Guzmán, Gloria I. & Cid, Antonio & Aguilera, Eduardo & García, Roberto & González de Molina, Manuel, 2016. "The social metabolism of biomass in Spain, 1900–2008: From food to feed-oriented changes in the agro-ecosystems," Ecological Economics, Elsevier, vol. 128(C), pages 130-138.
    10. Erb, Karl-Heinz & Krausmann, Fridolin & Gaube, Veronika & Gingrich, Simone & Bondeau, Alberte & Fischer-Kowalski, Marina & Haberl, Helmut, 2009. "Analyzing the global human appropriation of net primary production -- processes, trajectories, implications. An introduction," Ecological Economics, Elsevier, vol. 69(2), pages 250-259, December.
    11. Casas-Ledón, Yannay & Andrade, Cinthya & Salazar, Camila & Martínez-Martínez, Yenisleidy & Aguayo, Mauricio, 2023. "Understanding the dynamics of human appropriation on ecosystems via an exergy-based net primary productivity indicator: A case study in south-central Chile," Ecological Economics, Elsevier, vol. 210(C).
    12. Chen, Aifang & Li, Ruiyun & Wang, Honglin & He, Bin, 2015. "Quantitative assessment of human appropriation of aboveground net primary production in China," Ecological Modelling, Elsevier, vol. 312(C), pages 54-60.
    13. Zeke Marshall & Paul E. Brockway, 2020. "A Net Energy Analysis of the Global Agriculture, Aquaculture, Fishing and Forestry System," Biophysical Economics and Resource Quality, Springer, vol. 5(2), pages 1-27, June.
    14. Danilo Bertoni & Daniele Cavicchioli & Franco Donzelli & Giovanni Ferrazzi & Dario G. Frisio & Roberto Pretolani & Elena Claire Ricci & Vera Ventura, 2018. "Recent Contributions of Agricultural Economics Research in the Field of Sustainable Development," Agriculture, MDPI, vol. 8(12), pages 1-20, December.
    15. Batidzirai, B. & Smeets, E.M.W. & Faaij, A.P.C., 2012. "Harmonising bioenergy resource potentials—Methodological lessons from review of state of the art bioenergy potential assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6598-6630.
    16. Krausmann, Fridolin & Gingrich, Simone & Eisenmenger, Nina & Erb, Karl-Heinz & Haberl, Helmut & Fischer-Kowalski, Marina, 2009. "Growth in global materials use, GDP and population during the 20th century," Ecological Economics, Elsevier, vol. 68(10), pages 2696-2705, August.
    17. Hoffman, Eric & Cavigelli, Michel A. & Camargo, Gustavo & Ryan, Matthew & Ackroyd, Victoria J. & Richard, Tom L. & Mirsky, Steven, 2018. "Energy use and greenhouse gas emissions in organic and conventional grain crop production: Accounting for nutrient inflows," Agricultural Systems, Elsevier, vol. 162(C), pages 89-96.
    18. Zhang, Yanjie & Pan, Ying & Li, Meng & Wang, Zhipeng & Wu, Junxi & Zhang, Xianzhou & Cao, Yanan, 2021. "Impacts of human appropriation of net primary production on ecosystem regulating services in Tibet," Ecosystem Services, Elsevier, vol. 47(C).
    19. Venkat, Kumar, 2012. "The Climate Change and Economic Impacts of Food Waste in the United States," International Journal on Food System Dynamics, International Center for Management, Communication, and Research, vol. 2(4), pages 1-16, April.
    20. Julia K Steinberger & Fridolin Krausmann & Michael Getzner & Heinz Schandl & Jim West, 2013. "Development and Dematerialization: An International Study," PLOS ONE, Public Library of Science, vol. 8(10), pages 1-11, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agisys:v:103:y:2010:i:9:p:599-608. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agsy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.