Advanced Search
MyIDEAS: Login to save this article or follow this journal

Turnpike Theory

Contents:

Author Info

  • McKenzie, Lionel W

Abstract

This account of turnpike theorems concentrates on the discrete time model, descended from the early von Neumann growth model and the Dosso model. It portrays the current state of the theory under the following five headings: (i) a turnpike in the von Neumann model, (ii) a turnpike in the Ramsey model, (iii) Ramsey models with discounting, (iv) turnpike theorems for competitive equilibria, and (v) further generalizations. It emphasizes von Neumann facets and neighborhood convergence as the author's principal contribution to the theory. Under (v), it discusses models that allow for habit formation so that current preferences are affected by past consumption, and for non-convex technologies that have an initial phase of increasing returns followed by a terminal phase of decreasing returns. The theorems that have been reviewed are all concerned with the convergence of optimal paths to stationary optimal paths. However, the method of the proofs is to show that optimal paths converge to one another. The considerable literature on continuous time models related to the literature on the investment of the firm and to the engineering literature on optimal control, as well as applications of the asymptotic results of optimal growth theory to the theory of finance, have not been reviewed.

(This abstract was borrowed from another version of this item.)

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://links.jstor.org/sici?sici=0012-9682%28197609%2944%3A5%3C841%3ATT%3E2.0.CO%3B2-L&origin=repec
File Function: full text
Download Restriction: Access to full text is restricted to JSTOR subscribers. See http://www.jstor.org for details.

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Econometric Society in its journal Econometrica.

Volume (Year): 44 (1976)
Issue (Month): 5 (September)
Pages: 841-65

as in new window
Handle: RePEc:ecm:emetrp:v:44:y:1976:i:5:p:841-65

Contact details of provider:
Phone: 1 212 998 3820
Fax: 1 212 995 4487
Email:
Web page: http://www.econometricsociety.org/
More information through EDIRC

Order Information:
Email:
Web: http://www.blackwellpublishing.com/memb.asp?ref=0012-9682

Related research

Keywords:

Other versions of this item:

Find related papers by JEL classification:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. David Cass, 1964. "Optimum Economic Growth in an Aggregative Model of Capital Accumulation: A Turnpike Theorem," Cowles Foundation Discussion Papers 178, Cowles Foundation for Research in Economics, Yale University.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
This item has more than 25 citations. To prevent cluttering this page, these citations are listed on a separate page.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:ecm:emetrp:v:44:y:1976:i:5:p:841-65. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.