IDEAS home Printed from https://ideas.repec.org/a/cup/etheor/v32y2016i01p154-186_00.html
   My bibliography  Save this article

FIXED-b ASYMPTOTICS FOR SPATIALLY DEPENDENT ROBUST NONPARAMETRIC COVARIANCE MATRIX ESTIMATORS

Author

Listed:
  • Bester, C. Alan
  • Conley, Timothy G.
  • Hansen, Christian B.
  • Vogelsang, Timothy J.

Abstract

This paper develops a method for performing inference using spatially dependent data. We consider test statistics formed using nonparametric covariance matrix estimators that account for heteroskedasticity and spatial correlation (spatial HAC). We provide distributions of commonly used test statistics under “fixed-b” asymptotics, in which HAC smoothing parameters are proportional to the sample size. Under this sequence, spatial HAC estimators are not consistent but converge to nondegenerate limiting random variables that depend on the HAC smoothing parameters, the HAC kernel, and the shape of the spatial region in which the data are located. We illustrate the performance of the “fixed-b” approximation in the spatial context through a simulation example.

Suggested Citation

  • Bester, C. Alan & Conley, Timothy G. & Hansen, Christian B. & Vogelsang, Timothy J., 2016. "FIXED-b ASYMPTOTICS FOR SPATIALLY DEPENDENT ROBUST NONPARAMETRIC COVARIANCE MATRIX ESTIMATORS," Econometric Theory, Cambridge University Press, vol. 32(1), pages 154-186, February.
  • Handle: RePEc:cup:etheor:v:32:y:2016:i:01:p:154-186_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S0266466614000814/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Timothy G. Conley & Sílvia Gonçalves & Min Seong Kim & Benoit Perron, 2023. "Bootstrap inference under cross‐sectional dependence," Quantitative Economics, Econometric Society, vol. 14(2), pages 511-569, May.
    2. Bartalotti Otávio, 2019. "Regression Discontinuity and Heteroskedasticity Robust Standard Errors: Evidence from a Fixed-Bandwidth Approximation," Journal of Econometric Methods, De Gruyter, vol. 8(1), pages 1-26, January.
    3. Ulrich K. Müller & Mark W. Watson, 2021. "Spatial Correlation Robust Inference," Working Papers 2021-61, Princeton University. Economics Department..
    4. Hwang, Jungbin & Sun, Yixiao, 2017. "Asymptotic F and t tests in an efficient GMM setting," Journal of Econometrics, Elsevier, vol. 198(2), pages 277-295.
    5. Abhimanyu Gupta & Javier Hidalgo, 2020. "Nonparametric prediction with spatial data," Papers 2008.04269, arXiv.org, revised Nov 2021.
    6. J. Hidalgo & M. Schafgans, 2020. "Inference without smoothing for large panels with cross-sectional and temporal dependence," Papers 2006.14409, arXiv.org.
    7. Kim, Min Seong & Sun, Yixiao & Yang, Jingjing, 2017. "A fixed-bandwidth view of the pre-asymptotic inference for kernel smoothing with time series data," Journal of Econometrics, Elsevier, vol. 197(2), pages 298-322.
    8. Eduardo A. Souza-Rodrigues, 2016. "Nonparametric Regression with Common Shocks," Econometrics, MDPI, vol. 4(3), pages 1-17, September.
    9. Xiaoqing Ye & Yixiao Sun, 2018. "Heteroskedasticity- and autocorrelation-robust F and t tests in Stata," Stata Journal, StataCorp LP, vol. 18(4), pages 951-980, December.
    10. Kaicheng Chen & Timothy J. Vogelsang, 2023. "Fixed-b Asymptotics for Panel Models with Two-Way Clustering," Papers 2309.08707, arXiv.org, revised Oct 2023.
    11. Gupta, Abhimanyu, 2018. "Autoregressive spatial spectral estimates," Journal of Econometrics, Elsevier, vol. 203(1), pages 80-95.
    12. Hwang, Jungbin & Sun, Yixiao, 2018. "Should we go one step further? An accurate comparison of one-step and two-step procedures in a generalized method of moments framework," Journal of Econometrics, Elsevier, vol. 207(2), pages 381-405.
    13. Ulrich K. Muller & Mark W. Watson, 2021. "Spatial Correlation Robust Inference," Papers 2102.09353, arXiv.org.
    14. David Powell, 2017. "Inference with Correlated Clusters," Working Papers WR-1137-1, RAND Corporation.
    15. Min Seong Kim, 2021. "Robust Inference for Diffusion-Index Forecasts with Cross-Sectionally Dependent Data," Working papers 2021-04, University of Connecticut, Department of Economics.
    16. Carolina Caetano & Gregorio Caetano & Hao Fe & Eric R. Nielsen, 2021. "A Dummy Test of Identification in Models with Bunching," Finance and Economics Discussion Series 2021-068, Board of Governors of the Federal Reserve System (U.S.).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:32:y:2016:i:01:p:154-186_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.