IDEAS home Printed from https://ideas.repec.org/a/bpj/sagmbi/v9y2010i1n36.html
   My bibliography  Save this article

Optimal Tests Shrinking Both Means and Variances Applicable to Microarray Data Analysis

Author

Listed:
  • Hwang J.T. Gene

    (Cornell University)

  • Liu Peng

    (Iowa State University)

Abstract

As a consequence of the "large p small n" characteristic for microarray data, hypothesis tests based on individual genes often result in low average power. There are several proposed tests that attempt to improve power. Among these, the FS test that was developed using the concept of James-Stein shrinkage to estimate the variances showed a striking average power improvement. In this paper, we establish a framework in which we model the key parameters with a distribution to find an optimal Bayes test which we call the MAP test (where MAP stands for Maximum Average Power). Under this framework, the FS test can be derived as an empirical Bayes test approximating the MAP test corresponding to modeling the variances. By modeling both the means and the variances with a distribution, a MAP statistic is derived which is optimal in terms of average power but is computationally intensive. An empirical Bayes test called the FSS test is derived as an approximation to the MAP tests and can be computed instantaneously. The FSS statistic shrinks both the means and the variances and has numerically identical average power to the MAP tests. Much numerical evidence is presented in this paper that shows that the proposed test performs uniformly better in average power than the other tests in the literature, including the classical F test, the FS test, the test of Wright and Simon, the moderated t-test, SAM, Efron's t test, the B-statistic and Storey's optimal discovery procedure. A theory is established which indicates that the proposed test is optimal in power when controlling the false discovery rate (FDR).

Suggested Citation

  • Hwang J.T. Gene & Liu Peng, 2010. "Optimal Tests Shrinking Both Means and Variances Applicable to Microarray Data Analysis," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 9(1), pages 1-35, October.
  • Handle: RePEc:bpj:sagmbi:v:9:y:2010:i:1:n:36
    DOI: 10.2202/1544-6115.1587
    as

    Download full text from publisher

    File URL: https://doi.org/10.2202/1544-6115.1587
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.2202/1544-6115.1587?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Herbert Pang & Tiejun Tong & Hongyu Zhao, 2009. "Shrinkage-based Diagonal Discriminant Analysis and Its Applications in High-Dimensional Data," Biometrics, The International Biometric Society, vol. 65(4), pages 1021-1029, December.
    2. John D. Storey, 2007. "The optimal discovery procedure: a new approach to simultaneous significance testing," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(3), pages 347-368, June.
    3. Smyth Gordon K, 2004. "Linear Models and Empirical Bayes Methods for Assessing Differential Expression in Microarray Experiments," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 3(1), pages 1-28, February.
    4. Efron B. & Tibshirani R. & Storey J.D. & Tusher V., 2001. "Empirical Bayes Analysis of a Microarray Experiment," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1151-1160, December.
    5. John D. Storey, 2002. "A direct approach to false discovery rates," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 479-498, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xiao Min & Chen Ting & Ming Ruixing & Huang Kunpeng, 2020. "Optimal Estimation for Power of Variance with Application to Gene-Set Testing," Journal of Systems Science and Information, De Gruyter, vol. 8(6), pages 549-564, December.
    2. Wang, Cheng & Tong, Tiejun & Cao, Longbing & Miao, Baiqi, 2014. "Non-parametric shrinkage mean estimation for quadratic loss functions with unknown covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 125(C), pages 222-232.
    3. Ji Tieming & Liu Peng & Nettleton Dan, 2012. "Borrowing Information Across Genes and Experiments for Improved Error Variance Estimation in Microarray Data Analysis," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(3), pages 1-29, May.
    4. Qiu Jing & Qi Yue & Cui Xiangqin, 2014. "Applying shrinkage variance estimators to the TOST test in high dimensional settings," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 13(3), pages 1-19, June.
    5. Bar Haim Y. & Booth James G. & Wells Martin T., 2012. "A Mixture-Model Approach for Parallel Testing for Unequal Variances," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(1), pages 1-21, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Leek Jeffrey T & Storey John D., 2011. "The Joint Null Criterion for Multiple Hypothesis Tests," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-22, June.
    2. Xiaoquan Wen, 2017. "Robust Bayesian FDR Control Using Bayes Factors, with Applications to Multi-tissue eQTL Discovery," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(1), pages 28-49, June.
    3. Chen, Xiongzhi, 2019. "Uniformly consistently estimating the proportion of false null hypotheses via Lebesgue–Stieltjes integral equations," Journal of Multivariate Analysis, Elsevier, vol. 173(C), pages 724-744.
    4. Dazard, Jean-Eudes & Sunil Rao, J., 2012. "Joint adaptive mean–variance regularization and variance stabilization of high dimensional data," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2317-2333.
    5. Rossell David & Guerra Rudy & Scott Clayton, 2008. "Semi-Parametric Differential Expression Analysis via Partial Mixture Estimation," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 7(1), pages 1-29, April.
    6. Dørum Guro & Snipen Lars & Solheim Margrete & Sæbø Solve, 2009. "Rotation Testing in Gene Set Enrichment Analysis for Small Direct Comparison Experiments," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 8(1), pages 1-24, July.
    7. Xiao Min & Chen Ting & Ming Ruixing & Huang Kunpeng, 2020. "Optimal Estimation for Power of Variance with Application to Gene-Set Testing," Journal of Systems Science and Information, De Gruyter, vol. 8(6), pages 549-564, December.
    8. Habiger, Joshua D. & Peña, Edsel A., 2014. "Compound p-value statistics for multiple testing procedures," Journal of Multivariate Analysis, Elsevier, vol. 126(C), pages 153-166.
    9. Ji Tieming & Liu Peng & Nettleton Dan, 2012. "Borrowing Information Across Genes and Experiments for Improved Error Variance Estimation in Microarray Data Analysis," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 11(3), pages 1-29, May.
    10. Youngchao Ge & Sandrine Dudoit & Terence Speed, 2003. "Resampling-based multiple testing for microarray data analysis," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 12(1), pages 1-77, June.
    11. Wen Shi & Xi Chen & Jennifer Shang, 2019. "An Efficient Morris Method-Based Framework for Simulation Factor Screening," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 745-770, October.
    12. Hossain, Ahmed & Beyene, Joseph & Willan, Andrew R. & Hu, Pingzhao, 2009. "A flexible approximate likelihood ratio test for detecting differential expression in microarray data," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3685-3695, August.
    13. Dørum Guro & Snipen Lars & Solheim Margrete & Saebo Solve, 2011. "Smoothing Gene Expression Data with Network Information Improves Consistency of Regulated Genes," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-26, August.
    14. Daniel Yekutieli, 2015. "Bayesian tests for composite alternative hypotheses in cross-tabulated data," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 24(2), pages 287-301, June.
    15. Ruth Heller & Saharon Rosset, 2021. "Optimal control of false discovery criteria in the two‐group model," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(1), pages 133-155, February.
    16. Yu Lianbo & Gulati Parul & Fernandez Soledad & Pennell Michael & Kirschner Lawrence & Jarjoura David, 2011. "Fully Moderated T-statistic for Small Sample Size Gene Expression Arrays," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-22, September.
    17. Huixia Wang & Xuming He, 2008. "An Enhanced Quantile Approach for Assessing Differential Gene Expressions," Biometrics, The International Biometric Society, vol. 64(2), pages 449-457, June.
    18. Santu Ghosh & Alan M. Polansky, 2022. "Large-Scale Simultaneous Testing Using Kernel Density Estimation," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 84(2), pages 808-843, August.
    19. Ahmed Hossain & Hafiz T.A. Khan, 2016. "Identification of genomic markers correlated with sensitivity in solid tumors to Dasatinib using sparse principal components," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(14), pages 2538-2549, October.
    20. Kline, Patrick & Walters, Christopher, 2019. "Audits as Evidence: Experiments, Ensembles, and Enforcement," Institute for Research on Labor and Employment, Working Paper Series qt3z72m9kn, Institute of Industrial Relations, UC Berkeley.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sagmbi:v:9:y:2010:i:1:n:36. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.