IDEAS home Printed from https://ideas.repec.org/a/bpj/sagmbi/v10y2011i1n15.html
   My bibliography  Save this article

Application of the Lasso to Expression Quantitative Trait Loci Mapping

Author

Listed:
  • Brown Andrew Anand

    (Oslo University Hospital and University of Oslo)

  • Richardson Sylvia

    (Imperial College London)

  • Whittaker John

    (GlaxoSmithKline and London School of Hygiene & Tropical Medicine)

Abstract

Univariate methods have frequently been used to discover Quantitative Trait Loci for gene expression measurements, often with much success. However, correlations caused by Linkage Disequilibrium as well as chance correlations, which are functions of the large number of markers typically used in such studies, mean that causative regions can often cause multiple signals. Traditional investigations into the number of QTL for a given phenotype, such as visual inspection of likelihood plots, are not feasible when considering thousands of phenotypes. Stepwise methods have been suggested to counter this, but these are known to produce unstable models and there are difficulties in deriving significance estimates. The Lasso is a shrinkage method which has often been employed to discover true signals when the number of variables exceeds the number of observations. We propose a test statistic based on the threshold at which variables enter the Lasso model, prove analytic properties of this statistic which demonstrate parallels with univariate methods and demonstrate its utility in proposing candidate QTL. We show that this method controls for LD structure, and the estimates of statistical significance produced have superior properties when compared to those derived by stepwise methods. We study the performance of our method using simulation studies. These simulations find that the ratio of true discoveries to false positives is often superior for our method compared to univariate and stepwise approaches. Finally, we apply the derived method to data from a previous eQTL mapping experiment to investigate the nature of genetic regulation in this population.

Suggested Citation

  • Brown Andrew Anand & Richardson Sylvia & Whittaker John, 2011. "Application of the Lasso to Expression Quantitative Trait Loci Mapping," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 10(1), pages 1-35, March.
  • Handle: RePEc:bpj:sagmbi:v:10:y:2011:i:1:n:15
    DOI: 10.2202/1544-6115.1606
    as

    Download full text from publisher

    File URL: https://doi.org/10.2202/1544-6115.1606
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.2202/1544-6115.1606?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hao Helen Zhang & Wenbin Lu, 2007. "Adaptive Lasso for Cox's proportional hazards model," Biometrika, Biometrika Trust, vol. 94(3), pages 691-703.
    2. Gareth M. James & Peter Radchenko & Jinchi Lv, 2009. "DASSO: connections between the Dantzig selector and lasso," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 71(1), pages 127-142, January.
    3. C. M. Kendziorski & M. Chen & M. Yuan & H. Lan & A. D. Attie, 2006. "Statistical Methods for Expression Quantitative Trait Loci (eQTL) Mapping," Biometrics, The International Biometric Society, vol. 62(1), pages 19-27, March.
    4. Wei Zhang & Jun Zhu & Eric E Schadt & Jun S Liu, 2010. "A Bayesian Partition Method for Detecting Pleiotropic and Epistatic eQTL Modules," PLOS Computational Biology, Public Library of Science, vol. 6(1), pages 1-10, January.
    5. Fan J. & Li R., 2001. "Variable Selection via Nonconcave Penalized Likelihood and its Oracle Properties," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1348-1360, December.
    6. John D. Storey, 2002. "A direct approach to false discovery rates," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 64(3), pages 479-498, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jun Yan & Jian Huang, 2012. "Model Selection for Cox Models with Time-Varying Coefficients," Biometrics, The International Biometric Society, vol. 68(2), pages 419-428, June.
    2. Jianqing Fan & Xu Han, 2017. "Estimation of the false discovery proportion with unknown dependence," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(4), pages 1143-1164, September.
    3. Tang, Linjun & Zhou, Zhangong & Wu, Changchun, 2012. "Weighted composite quantile estimation and variable selection method for censored regression model," Statistics & Probability Letters, Elsevier, vol. 82(3), pages 653-663.
    4. Zhang, Tao & Zhang, Qingzhao & Wang, Qihua, 2014. "Model detection for functional polynomial regression," Computational Statistics & Data Analysis, Elsevier, vol. 70(C), pages 183-197.
    5. Joseph G. Ibrahim & Hongtu Zhu & Ramon I. Garcia & Ruixin Guo, 2011. "Fixed and Random Effects Selection in Mixed Effects Models," Biometrics, The International Biometric Society, vol. 67(2), pages 495-503, June.
    6. E. Androulakis & C. Koukouvinos, 2013. "A new variable selection method for uniform designs," Journal of Applied Statistics, Taylor & Francis Journals, vol. 40(12), pages 2564-2578, December.
    7. Bo Jiang & Jun S. Liu, 2015. "Bayesian Partition Models for Identifying Expression Quantitative Trait Loci," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 110(512), pages 1350-1361, December.
    8. Zhixuan Fu & Shuangge Ma & Haiqun Lin & Chirag R. Parikh & Bingqing Zhou, 2017. "Penalized Variable Selection for Multi-center Competing Risks Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 9(2), pages 379-405, December.
    9. Guang Cheng & Hao Zhang & Zuofeng Shang, 2015. "Sparse and efficient estimation for partial spline models with increasing dimension," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 67(1), pages 93-127, February.
    10. Lian, Heng & Li, Jianbo & Hu, Yuao, 2013. "Shrinkage variable selection and estimation in proportional hazards models with additive structure and high dimensionality," Computational Statistics & Data Analysis, Elsevier, vol. 63(C), pages 99-112.
    11. Qu, Lianqiang & Song, Xinyuan & Sun, Liuquan, 2018. "Identification of local sparsity and variable selection for varying coefficient additive hazards models," Computational Statistics & Data Analysis, Elsevier, vol. 125(C), pages 119-135.
    12. Wang Chamont & Gevertz Jana L., 2016. "Finding causative genes from high-dimensional data: an appraisal of statistical and machine learning approaches," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 15(4), pages 321-347, August.
    13. Kevin He & Yue Wang & Xiang Zhou & Han Xu & Can Huang, 2019. "An improved variable selection procedure for adaptive Lasso in high-dimensional survival analysis," Lifetime Data Analysis: An International Journal Devoted to Statistical Methods and Applications for Time-to-Event Data, Springer, vol. 25(3), pages 569-585, July.
    14. Xin Cheng & Wenbin Lu & Mengling Liu, 2015. "Identification of homogeneous and heterogeneous variables in pooled cohort studies," Biometrics, The International Biometric Society, vol. 71(2), pages 397-403, June.
    15. Zhao, Sihai Dave & Li, Yi, 2012. "Principled sure independence screening for Cox models with ultra-high-dimensional covariates," Journal of Multivariate Analysis, Elsevier, vol. 105(1), pages 397-411.
    16. Na You & Shun He & Xueqin Wang & Junxian Zhu & Heping Zhang, 2018. "Subtype classification and heterogeneous prognosis model construction in precision medicine," Biometrics, The International Biometric Society, vol. 74(3), pages 814-822, September.
    17. T. Cai & J. Huang & L. Tian, 2009. "Regularized Estimation for the Accelerated Failure Time Model," Biometrics, The International Biometric Society, vol. 65(2), pages 394-404, June.
    18. Heng Lian & Xin Chen & Jian-Yi Yang, 2012. "Identification of Partially Linear Structure in Additive Models with an Application to Gene Expression Prediction from Sequences," Biometrics, The International Biometric Society, vol. 68(2), pages 437-445, June.
    19. Michael R. Wierzbicki & Li-Bing Guo & Qing-Tao Du & Wensheng Guo, 2014. "Sparse Semiparametric Nonlinear Model With Application to Chromatographic Fingerprints," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 109(508), pages 1339-1349, December.
    20. Elena Ivona DUMITRESCU & Sullivan HUE & Christophe HURLIN & Sessi TOKPAVI, 2020. "Machine Learning or Econometrics for Credit Scoring: Let’s Get the Best of Both Worlds," LEO Working Papers / DR LEO 2839, Orleans Economics Laboratory / Laboratoire d'Economie d'Orleans (LEO), University of Orleans.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:sagmbi:v:10:y:2011:i:1:n:15. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.