IDEAS home Printed from https://ideas.repec.org/a/bpj/jtsmet/v5y2013i1p61-68n3.html
   My bibliography  Save this article

Testing for Neglected Nonlinearity Using Artificial Neural Networks with Many Randomized Hidden Unit Activations

Author

Listed:
  • Lee Tae-Hwy
  • Xi Zhou
  • Zhang Ru

    (University of California, Riverside, California, United States)

Abstract

This paper makes a simple but previously neglected point with regard to an empirical application of the test of White (1989) and Lee, White, and Granger (LWG, 1993), for neglected nonlinearity in conditional mean, using the feedforward single layer artificial neural network (ANN). Because the activation parameters in the hidden layer are not identified under the null hypothesis of linearity, LWG suggested to activate the ANN hidden units based on the randomly generated activation parameters. Their Monte Carlo experiments demonstrated the excellent performance (good size and power), even if LWG considered a fairly small number (10 or 20) of random hidden unit activations. However, in this paper, we note that the good size and power of Monte Carlo experiments are the average frequencies of rejecting the null hypothsis over multiple replications of the data generating process. The average over many simulations in Monte Carlo smooths out the randomness of the activations. In an empirical study, unlike in a Monte Carlo study, multiple realizations of the data are not possible or available. In this case, the ANN test is sensitive to the randomly generated activation parameters. One solution is the use of Bonferroni bounds as suggested by LWG (1993), which however still exhibits some excessive dependence on the random activations (as shown in this paper). Another solution is to integrate the test statistic over the nuisance parameter space, for which however, bootstrap or simulation should be used to obtain the null distribution of the integrated statistic. In this paper, we consider a much simpler solution that is shown to work very well. That is, we simply increase the number of randomized hidden unit activations to a (very) large number (e.g. 1,000). We show that using many randomly generated activation parameters can robustify the performance of the ANN test when it is applied to a real empirical data. This robustification is reliable and useful in practice and can be achieved at no cost as increasing the number of random activations is almost costless given today’s computer technology.

Suggested Citation

  • Lee Tae-Hwy & Xi Zhou & Zhang Ru, 2013. "Testing for Neglected Nonlinearity Using Artificial Neural Networks with Many Randomized Hidden Unit Activations," Journal of Time Series Econometrics, De Gruyter, vol. 5(1), pages 61-68, January.
  • Handle: RePEc:bpj:jtsmet:v:5:y:2013:i:1:p:61-68:n:3
    DOI: 10.1515/jtse-2012-0021
    as

    Download full text from publisher

    File URL: https://doi.org/10.1515/jtse-2012-0021
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.1515/jtse-2012-0021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Barbara Rossi & Atsushi Inoue, 2012. "Out-of-Sample Forecast Tests Robust to the Choice of Window Size," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 30(3), pages 432-453, April.
    2. Hansen, Bruce E, 1996. "Inference When a Nuisance Parameter Is Not Identified under the Null Hypothesis," Econometrica, Econometric Society, vol. 64(2), pages 413-430, March.
    3. White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-838, May.
    4. Lee Tae-Hwy, 2001. "Neural Network Test and Nonparametric Kernel Test for Neglected Nonlinearity in Regression Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 4(4), pages 1-15, January.
    5. White,Halbert, 1996. "Estimation, Inference and Specification Analysis," Cambridge Books, Cambridge University Press, number 9780521574464, January.
    6. Chen, Xiaohong, 2007. "Large Sample Sieve Estimation of Semi-Nonparametric Models," Handbook of Econometrics, in: J.J. Heckman & E.E. Leamer (ed.), Handbook of Econometrics, edition 1, volume 6, chapter 76, Elsevier.
    7. Andrews, Donald W K, 1991. "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation," Econometrica, Econometric Society, vol. 59(3), pages 817-858, May.
    8. Lee, Tae-Hwy & White, Halbert & Granger, Clive W. J., 1993. "Testing for neglected nonlinearity in time series models : A comparison of neural network methods and alternative tests," Journal of Econometrics, Elsevier, vol. 56(3), pages 269-290, April.
    9. Teräsvirta Timo, 1996. "Power Properties of Linearity Tests for Time Series," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 1(1), pages 1-10, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tae-Hwy Lee & Zhou Xi & Ru Zhang, 2013. "Testing for Neglected Nonlinearity Using Regularized Artificial Neural Networks," Working Papers 201422, University of California at Riverside, Department of Economics, revised Apr 2012.
    2. Frédérique Bec & Mélika Ben Salem & Marine Carrasco, 2010. "Detecting Mean Reversion in Real Exchange Rates from a Multiple Regime star Model," Annals of Economics and Statistics, GENES, issue 99-100, pages 395-427.
    3. Chen, Xiaohong & Liao, Zhipeng & Sun, Yixiao, 2014. "Sieve inference on possibly misspecified semi-nonparametric time series models," Journal of Econometrics, Elsevier, vol. 178(P3), pages 639-658.
    4. Shintani, Mototsugu, 2005. "Nonlinear Forecasting Analysis Using Diffusion Indexes: An Application to Japan," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(3), pages 517-538, June.
    5. White, Halbert & Pettenuzzo, Davide, 2014. "Granger causality, exogeneity, cointegration, and economic policy analysis," Journal of Econometrics, Elsevier, vol. 178(P2), pages 316-330.
    6. Shintani, Mototsugu, 2008. "A dynamic factor approach to nonlinear stability analysis," Journal of Economic Dynamics and Control, Elsevier, vol. 32(9), pages 2788-2808, September.
    7. repec:lan:wpaper:2454 is not listed on IDEAS
    8. repec:lan:wpaper:2375 is not listed on IDEAS
    9. Corradi, Valentina & Swanson, Norman R., 2006. "Bootstrap conditional distribution tests in the presence of dynamic misspecification," Journal of Econometrics, Elsevier, vol. 133(2), pages 779-806, August.
    10. Dufour, Jean-Marie, 2001. "Logique et tests d’hypothèses," L'Actualité Economique, Société Canadienne de Science Economique, vol. 77(2), pages 171-190, juin.
    11. Timo Teräsvirta & Marcelo C. Medeiros & Gianluigi Rech, 2006. "Building neural network models for time series: a statistical approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 25(1), pages 49-75.
    12. repec:jss:jstsof:16:i09 is not listed on IDEAS
    13. Pavlidis Efthymios G & Paya Ivan & Peel David A, 2010. "Specifying Smooth Transition Regression Models in the Presence of Conditional Heteroskedasticity of Unknown Form," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 14(3), pages 1-40, May.
    14. Jin Seo Cho & Peter C. B. Phillips & Juwon Seo, 2019. "Parametric Inference on the Mean of Functional Data Applied to Lifetime Income Curves," Working papers 2019rwp-153, Yonsei University, Yonsei Economics Research Institute.
    15. Castle, Jennifer L. & Hendry, David F., 2010. "A low-dimension portmanteau test for non-linearity," Journal of Econometrics, Elsevier, vol. 158(2), pages 231-245, October.
    16. Jean-Marie Dufour, 2001. "Logiques et tests d'hypothèses : réflexions sur les problèmes mal posés en économétrie," CIRANO Working Papers 2001s-40, CIRANO.
    17. Jochen Heberle & Cristina Sattarhoff, 2017. "A Fast Algorithm for the Computation of HAC Covariance Matrix Estimators," Econometrics, MDPI, vol. 5(1), pages 1-16, January.
    18. repec:lan:wpaper:2596 is not listed on IDEAS
    19. repec:lan:wpaper:2373 is not listed on IDEAS
    20. Lee Tae-Hwy, 2001. "Neural Network Test and Nonparametric Kernel Test for Neglected Nonlinearity in Regression Models," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 4(4), pages 1-15, January.
    21. Gruener Hans Peter & Hayo Bernd & Hefeker Carsten, 2009. "Unions, Wage Setting and Monetary Policy Uncertainty," The B.E. Journal of Macroeconomics, De Gruyter, vol. 9(1), pages 1-25, October.
    22. Hong, Seung Hyun & Phillips, Peter C. B., 2010. "Testing Linearity in Cointegrating Relations With an Application to Purchasing Power Parity," Journal of Business & Economic Statistics, American Statistical Association, vol. 28(1), pages 96-114.
    23. Frank Kleibergen, 2004. "Expansions of GMM statistics that indicate their properties under weak and/or many instruments and the bootstrap," Econometric Society 2004 North American Summer Meetings 408, Econometric Society.
    24. Corradi, Valentina & Swanson, Norman R., 2004. "Some recent developments in predictive accuracy testing with nested models and (generic) nonlinear alternatives," International Journal of Forecasting, Elsevier, vol. 20(2), pages 185-199.
    25. Corradi, Valentina & Fernandez, Andres & Swanson, Norman R., 2009. "Information in the Revision Process of Real-Time Datasets," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(4), pages 455-467.

    More about this item

    JEL classification:

    • C1 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General
    • C4 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods: Special Topics
    • C5 - Mathematical and Quantitative Methods - - Econometric Modeling

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:jtsmet:v:5:y:2013:i:1:p:61-68:n:3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.