IDEAS home Printed from https://ideas.repec.org/a/bpj/jqsprt/v6y2010i3n8.html
   My bibliography  Save this article

A Point-Mass Mixture Random Effects Model for Pitching Metrics

Author

Listed:
  • Piette James

    (University of Pennsylvania)

  • Braunstein Alexander

    (Google, Inc.)

  • McShane Blakeley B

    (Kellogg School of Management, Northwestern University)

  • Jensen Shane T.

    (University of Pennsylvania)

Abstract

A plethora of statistics have been proposed to measure the effectiveness of pitchers in Major League Baseball. While many of these are quite traditional (e.g., ERA, wins), some have gained currency only recently (e.g., WHIP, K/BB). Some of these metrics may have predictive power, but it is unclear which are the most reliable or consistent. We address this question by constructing a Bayesian random effects model that incorporates a point mass mixture and fitting it to data on twenty metrics spanning approximately 2,500 players and 35 years. Our model identifies FIP, HR/9, ERA, and BB/9 as the highest signal metrics for starters and GB%, FB%, and K/9 as the highest signal metrics for relievers. In general, the metrics identified by our model are independent of team defense. Our procedure also provides a relative ranking of metrics separately by starters and relievers and shows that these rankings differ quite substantially between them. Our methodology is compared to a Lasso-based procedure and is internally validated by detailed case studies.

Suggested Citation

  • Piette James & Braunstein Alexander & McShane Blakeley B & Jensen Shane T., 2010. "A Point-Mass Mixture Random Effects Model for Pitching Metrics," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 6(3), pages 1-17, July.
  • Handle: RePEc:bpj:jqsprt:v:6:y:2010:i:3:n:8
    DOI: 10.2202/1559-0410.1237
    as

    Download full text from publisher

    File URL: https://doi.org/10.2202/1559-0410.1237
    Download Restriction: For access to full text, subscription to the journal or payment for the individual article is required.

    File URL: https://libkey.io/10.2202/1559-0410.1237?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Albert James, 2006. "Pitching Statistics, Talent and Luck, and the Best Strikeout Seasons of All-Time," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 2(1), pages 1-32, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Albert Jim, 2016. "Improved component predictions of batting and pitching measures," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 12(2), pages 73-85, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yurko Ronald & Ventura Samuel & Horowitz Maksim, 2019. "nflWAR: a reproducible method for offensive player evaluation in football," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 15(3), pages 163-183, September.
    2. Albert Jim, 2013. "Looking at spacings to assess streakiness," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 9(2), pages 151-163, June.
    3. Albert Jim, 2016. "Improved component predictions of batting and pitching measures," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 12(2), pages 73-85, June.
    4. Baumer Ben S. & Piette James & Null Brad, 2012. "Parsing the Relationship between Baserunning and Batting Abilities within Lineups," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 8(2), pages 1-19, June.
    5. Albert Jim, 2010. "Using the Count to Measure Pitching Performance," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 6(4), pages 1-30, October.
    6. Yurko Ronald & Ventura Samuel & Horowitz Maksim, 2019. "nflWAR: a reproducible method for offensive player evaluation in football," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 15(3), pages 163-183, September.
    7. Phillips Andrew J. K., 2014. "Uncovering Formula One driver performances from 1950 to 2013 by adjusting for team and competition effects," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 10(2), pages 1-18, June.
    8. Sumit Sarkar & Sooraj Kamath, 2023. "Does luck play a role in the determination of the rank positions in football leagues? A study of Europe’s ‘big five’," Annals of Operations Research, Springer, vol. 325(1), pages 245-260, June.
    9. Łukasz Szczepański & Ian McHale, 2016. "Beyond completion rate: evaluating the passing ability of footballers," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 179(2), pages 513-533, February.
    10. Null Brad, 2009. "Modeling Baseball Player Ability with a Nested Dirichlet Distribution," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 5(2), pages 1-38, May.
    11. Vock David Michael & Vock Laura Frances Boehm, 2018. "Estimating the effect of plate discipline using a causal inference framework: an application of the G-computation algorithm," Journal of Quantitative Analysis in Sports, De Gruyter, vol. 14(2), pages 37-56, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bpj:jqsprt:v:6:y:2010:i:3:n:8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Peter Golla (email available below). General contact details of provider: https://www.degruyter.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.