IDEAS home Printed from https://ideas.repec.org/a/bla/jtsera/v25y2004i2p173-197.html
   My bibliography  Save this article

Partial Likelihood Inference For Time Series Following Generalized Linear Models

Author

Listed:
  • Konstantinos Fokianos
  • Benjamin Kedem

Abstract

. The present article offers a certain unifying approach to time series regression modelling by combining partial likelihood (PL) inference and generalized linear models. An advantage gained by resorting to PL is that the joint distribution of the response and the covariates is left unspecified, and furthermore, PL allows for temporal or sequential conditional inference with respect to a filtration generated by all that is known to the observer at the time of observation. Two real data examples illustrate the methodology.

Suggested Citation

  • Konstantinos Fokianos & Benjamin Kedem, 2004. "Partial Likelihood Inference For Time Series Following Generalized Linear Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 25(2), pages 173-197, March.
  • Handle: RePEc:bla:jtsera:v:25:y:2004:i:2:p:173-197
    DOI: 10.1046/j.0143-9782.2003.00344.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1046/j.0143-9782.2003.00344.x
    Download Restriction: no

    File URL: https://libkey.io/10.1046/j.0143-9782.2003.00344.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. P. Diggle & M. G. Kenward, 1994. "Informative Drop‐Out in Longitudinal Data Analysis," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 43(1), pages 49-73, March.
    2. Neil Shephard, 1995. "Generalized linear autoregressions," Economics Papers 8., Economics Group, Nuffield College, University of Oxford.
    3. Ludwig Fahrmeir & Heinz Kaufmann, 1987. "Regression Models For Non‐Stationary Categorical Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 8(2), pages 147-160, March.
    4. Konstantinos Fokianos, 2001. "Truncated Poisson Regression for Time Series of Counts," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 28(4), pages 645-659, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fokianos, Konstantinos & Rahbek, Anders & Tjøstheim, Dag, 2009. "Poisson Autoregression," Journal of the American Statistical Association, American Statistical Association, vol. 104(488), pages 1430-1439.
    2. Guilherme Pumi & Taiane Schaedler Prass & Rafael Rigão Souza, 2021. "A dynamic model for double‐bounded time series with chaotic‐driven conditional averages," Scandinavian Journal of Statistics, Danish Society for Theoretical Statistics;Finnish Statistical Society;Norwegian Statistical Association;Swedish Statistical Association, vol. 48(1), pages 68-86, March.
    3. Singh, Rakhi & Mukhopadhyay, Siuli, 2019. "Exact Bayesian designs for count time series," Computational Statistics & Data Analysis, Elsevier, vol. 134(C), pages 157-170.
    4. R. Prabhakar Rao & Brajendra C. Sutradhar, 2020. "Multiple Categorical Covariates-Based Multinomial Dynamic Response Model," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(1), pages 186-219, February.
    5. Konstantinos Fokianos & Roland Fried, 2010. "Interventions in INGARCH processes," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(3), pages 210-225, May.
    6. Andréa Rocha & Francisco Cribari-Neto, 2009. "Beta autoregressive moving average models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 18(3), pages 529-545, November.
    7. Fokianos, Konstantinos & Tjøstheim, Dag, 2011. "Log-linear Poisson autoregression," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 563-578, March.
    8. Dag Tjøstheim, 2012. "Some recent theory for autoregressive count time series," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(3), pages 413-438, September.
    9. Brajendra C. Sutradhar & Asokan M. Variyath, 2020. "A New Look at the Models for Ordinal Categorical Data Analysis," Sankhya B: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 82(1), pages 111-141, May.
    10. Konstantinos Fokianos & Dag Tjøstheim, 2012. "Nonlinear Poisson autoregression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 64(6), pages 1205-1225, December.
    11. Moizes Melo & Airlane Alencar, 2020. "Conway–Maxwell–Poisson Autoregressive Moving Average Model for Equidispersed, Underdispersed, and Overdispersed Count Data," Journal of Time Series Analysis, Wiley Blackwell, vol. 41(6), pages 830-857, November.
    12. Klingenberg, Bernhard, 2008. "Regression models for binary time series with gaps," Computational Statistics & Data Analysis, Elsevier, vol. 52(8), pages 4076-4090, April.
    13. Rongning Wu & Yunwei Cui, 2014. "A Parameter-Driven Logit Regression Model For Binary Time Series," Journal of Time Series Analysis, Wiley Blackwell, vol. 35(5), pages 462-477, August.
    14. Fokianos, Konstantions & Fried, Roland, 2009. "Interventions in ingarch processes," Technical Reports 2009,11, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    15. Luis E. Nieto-Barajas, 2022. "Dependence on a collection of Poisson random variables," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(1), pages 21-39, March.
    16. Vurukonda Sathish & Siuli Mukhopadhyay & Rashmi Tiwari, 2022. "Autoregressive and moving average models for zero‐inflated count time series," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 76(2), pages 190-218, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David M. Murray & Jonathan L. Blitstein, 2003. "Methods To Reduce The Impact Of Intraclass Correlation In Group-Randomized Trials," Evaluation Review, , vol. 27(1), pages 79-103, February.
    2. Patrick E. B. FitzGerald, 2002. "Extended Generalized Estimating Equations for Binary Familial Data with Incomplete Families," Biometrics, The International Biometric Society, vol. 58(4), pages 718-726, December.
    3. Pourahmadi, Mohsen & Daniels, Michael J. & Park, Trevor, 2007. "Simultaneous modelling of the Cholesky decomposition of several covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 98(3), pages 568-587, March.
    4. Katarzyna Bien & Ingmar Nolte & Winfried Pohlmeier, 2008. "A multivariate integer count hurdle model: theory and application to exchange rate dynamics," Studies in Empirical Economics, in: Luc Bauwens & Winfried Pohlmeier & David Veredas (ed.), High Frequency Financial Econometrics, pages 31-48, Springer.
    5. Sinha, Sanjoy K. & Kaushal, Amit & Xiao, Wenzhong, 2014. "Inference for longitudinal data with nonignorable nonmonotone missing responses," Computational Statistics & Data Analysis, Elsevier, vol. 72(C), pages 77-91.
    6. E. Michael Foster & Grace Y. Fang, 2004. "Alternative Methods for Handling Attrition," Evaluation Review, , vol. 28(5), pages 434-464, October.
    7. Sun-Joo Cho & Sarah Brown-Schmidt & Woo-yeol Lee, 2018. "Autoregressive Generalized Linear Mixed Effect Models with Crossed Random Effects: An Application to Intensive Binary Time Series Eye-Tracking Data," Psychometrika, Springer;The Psychometric Society, vol. 83(3), pages 751-771, September.
    8. James W. Taylor, 2012. "Density Forecasting of Intraday Call Center Arrivals Using Models Based on Exponential Smoothing," Management Science, INFORMS, vol. 58(3), pages 534-549, March.
    9. Mette Ejrnæs & Anders Holm, 2006. "Comparing Fixed Effects and Covariance Structure Estimators for Panel Data," Sociological Methods & Research, , vol. 35(1), pages 61-83, August.
    10. Fabrizio Cipollini & Robert F. Engle & Giampiero M. Gallo, 2006. "Vector Multiplicative Error Models: Representation and Inference," NBER Technical Working Papers 0331, National Bureau of Economic Research, Inc.
    11. Geert Verbeke & Geert Molenberghs & Herbert Thijs & Emmanuel Lesaffre & Michael G. Kenward, 2001. "Sensitivity Analysis for Nonrandom Dropout: A Local Influence Approach," Biometrics, The International Biometric Society, vol. 57(1), pages 7-14, March.
    12. Brajendra C. Sutradhar, 2018. "Semi-parametric Dynamic Models for Longitudinal Ordinal Categorical Data," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(1), pages 80-109, February.
    13. Rebecca E. Anthony & Amy L. Paine & Katherine H. Shelton, 2019. "Depression and Anxiety Symptoms of British Adoptive Parents: A Prospective Four-Wave Longitudinal Study," IJERPH, MDPI, vol. 16(24), pages 1-14, December.
    14. Miran A. Jaffa & Ayad A. Jaffa, 2019. "A Likelihood-Based Approach with Shared Latent Random Parameters for the Longitudinal Binary and Informative Censoring Processes," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 11(3), pages 597-613, December.
    15. Molenberghs, Geert & Verbeke, Geert & Thijs, Herbert & Lesaffre, Emmanuel & Kenward, Michael G., 2001. "Influence analysis to assess sensitivity of the dropout process," Computational Statistics & Data Analysis, Elsevier, vol. 37(1), pages 93-113, July.
    16. Shu Xu & Shelley A. Blozis, 2011. "Sensitivity Analysis of Mixed Models for Incomplete Longitudinal Data," Journal of Educational and Behavioral Statistics, , vol. 36(2), pages 237-256, April.
    17. Sebastian Domhof & Edgar Brunner & D. Wayne Osgood, 2002. "Rank Procedures for Repeated Measures with Missing Values," Sociological Methods & Research, , vol. 30(3), pages 367-393, February.
    18. Snyder, Ralph D. & Ord, J. Keith & Beaumont, Adrian, 2012. "Forecasting the intermittent demand for slow-moving inventories: A modelling approach," International Journal of Forecasting, Elsevier, vol. 28(2), pages 485-496.
    19. H. Kaufmann, 1988. "On existence and uniqueness of maximum likelihood estimates in quantal and ordinal response models," Metrika: International Journal for Theoretical and Applied Statistics, Springer, vol. 35(1), pages 291-313, December.
    20. Amelia M. Haviland & Bobby L. Jones & Daniel S. Nagin, 2011. "Group-based Trajectory Modeling Extended to Account for Nonrandom Participant Attrition," Sociological Methods & Research, , vol. 40(2), pages 367-390, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:jtsera:v:25:y:2004:i:2:p:173-197. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0143-9782 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.