Advanced Search
MyIDEAS: Login to save this article or follow this journal

Parameter estimation for differential equations: a generalized smoothing approach


Author Info

  • J. O. Ramsay
  • G. Hooker
  • D. Campbell
  • J. Cao
Registered author(s):


    We propose a new method for estimating parameters in models that are defined by a system of non-linear differential equations. Such equations represent changes in system outputs by linking the behaviour of derivatives of a process to the behaviour of the process itself. Current methods for estimating parameters in differential equations from noisy data are computationally intensive and often poorly suited to the realization of statistical objectives such as inference and interval estimation. The paper describes a new method that uses noisy measurements on a subset of variables to estimate the parameters defining a system of non-linear differential equations. The approach is based on a modification of data smoothing methods along with a generalization of profiled estimation. We derive estimates and confidence intervals, and show that these have low bias and good coverage properties respectively for data that are simulated from models in chemical engineering and neurobiology. The performance of the method is demonstrated by using real world data from chemistry and from the progress of the autoimmune disease lupus. Copyright 2007 Royal Statistical Society.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL:
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Royal Statistical Society in its journal Journal of the Royal Statistical Society: Series B (Statistical Methodology).

    Volume (Year): 69 (2007)
    Issue (Month): 5 ()
    Pages: 741-796

    as in new window
    Handle: RePEc:bla:jorssb:v:69:y:2007:i:5:p:741-796

    Contact details of provider:
    Postal: 12 Errol Street, London EC1Y 8LX, United Kingdom
    Phone: -44-171-638-8998
    Fax: -44-171-256-7598
    Web page:
    More information through EDIRC

    Order Information:

    Related research



    No references listed on IDEAS
    You can help add them by filling out this form.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Commenges, D. & Jolly, D. & Drylewicz, J. & Putter, H. & ThiƩbaut, R., 2011. "Inference in HIV dynamics models via hierarchical likelihood," Computational Statistics & Data Analysis, Elsevier, vol. 55(1), pages 446-456, January.
    2. Zhou, Jie & Han, Lu & Liu, Sanyang, 2013. "Nonlinear mixed-effects state space models with applications to HIV dynamics," Statistics & Probability Letters, Elsevier, vol. 83(5), pages 1448-1456.
    3. Hong, Zhaoping & Lian, Heng, 2012. "Time-varying coefficient estimation in differential equation models with noisy time-varying covariates," Journal of Multivariate Analysis, Elsevier, vol. 103(1), pages 58-67, January.
    4. Steffen Borchers & Sandro Bosio & Rolf Findeisen & Utz-Uwe Haus & Philipp Rumschinski & Robert Weismantel, 2011. "Graph problems arising from parameter identification of discrete dynamical systems," Computational Statistics, Springer, vol. 73(3), pages 381-400, June.
    5. Nancy Heckman, 2010. "Comments on: Dynamic relations for sparsely sampled Gaussian processes," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer, vol. 19(1), pages 46-49, May.
    6. Carey, Michelle & Gath, Eugene G. & Hayes, Kevin, 2014. "Frontiers in financial dynamics," Research in International Business and Finance, Elsevier, vol. 30(C), pages 369-376.
    7. Pascal Deboeck & Steven Boker, 2010. "Modeling Noisy Data with Differential Equations Using Observed and Expected Matrices," Psychometrika, Springer, vol. 75(3), pages 420-437, September.


    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.


    Access and download statistics


    When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:69:y:2007:i:5:p:741-796. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.