Advanced Search
MyIDEAS: Login to save this article or follow this journal

Nonparametric methods for deconvolving multiperiodic functions

Contents:

Author Info

  • Peter Hall
  • Jiying Yin
Registered author(s):

    Abstract

    Multiperiodic functions, or functions that can be represented as finite additive mixtures of periodic functions, arise in problems related to stellar radiation. There they represent the overall variation in radiation intensity with time. The individual periodic components generally correspond to different sources of radiation and have intrinsic physical meaning provided that they can be 'deconvolved' from the mixture. We suggest a combination of kernel and orthogonal series methods for performing the deconvolution, and we show how to estimate both the sequence of periods and the periodic functions themselves. We pay particular attention to the issue of identifiability, in a nonparametric sense, of the components. This aspect of the problem is shown to exhibit particularly unusual features, and to have connections to number theory. The matter of rates of convergence of estimators also has links there, although we show that the rate-of-convergence problem can be treated from a relatively conventional viewpoint by considering an appropriate prior distribution for the periods. Copyright 2003 Royal Statistical Society.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.blackwell-synergy.com/doi/abs/10.1046/j.1369-7412.2003.00420.x
    File Function: link to full text
    Download Restriction: Access to full text is restricted to subscribers.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Royal Statistical Society in its journal Journal of the Royal Statistical Society: Series B (Statistical Methodology).

    Volume (Year): 65 (2003)
    Issue (Month): 4 ()
    Pages: 869-886

    as in new window
    Handle: RePEc:bla:jorssb:v:65:y:2003:i:4:p:869-886

    Contact details of provider:
    Postal: 12 Errol Street, London EC1Y 8LX, United Kingdom
    Phone: -44-171-638-8998
    Fax: -44-171-256-7598
    Email:
    Web page: http://wileyonlinelibrary.com/journal/rssb
    More information through EDIRC

    Order Information:
    Web: http://ordering.onlinelibrary.wiley.com/subs.asp?ref=1467-9868&doi=10.1111/(ISSN)1467-9868

    Related research

    Keywords:

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Michael Vogt & Oliver Linton, 2012. "Nonparametric estimation of a periodic sequence in the presence of a smooth trend," CeMMAP working papers CWP23/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:bla:jorssb:v:65:y:2003:i:4:p:869-886. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.