Advanced Search
MyIDEAS: Login to save this article or follow this journal

A Simple and Numerically Efficient Valuation Method for American Puts Using a Modified Geske-Johnson Approach

Contents:

Author Info

  • Bunch, David S
  • Johnson, Herb
Registered author(s):

    Abstract

    R. Geske and H. E. Johnson (1984) develop an equation for the American put price and obtain accurate prices using a method requiring quadrivariate normal integrals evaluated over an interval containing four equally spaced exercise points. The authors show that a modification of their method, which uses optimal placement of exercise points, yields, in most cases, accurate values using nothing more than bivariate normals. In the more difficult (deep-in-the-money) cases, trivariate normals suffice. Copyright 1992 by American Finance Association.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://links.jstor.org/sici?sici=0022-1082%28199206%2947%3A2%3C809%3AASANEV%3E2.0.CO%3B2-K&origin=repec
    File Function: full text
    Download Restriction: Access to full text is restricted to JSTOR subscribers. See http://www.jstor.org for details.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by American Finance Association in its journal Journal of Finance.

    Volume (Year): 47 (1992)
    Issue (Month): 2 (June)
    Pages: 809-16

    as in new window
    Handle: RePEc:bla:jfinan:v:47:y:1992:i:2:p:809-16

    Contact details of provider:
    Web page: http://www.afajof.org/
    More information through EDIRC

    Order Information:
    Web: http://www.afajof.org/membership/join.asp

    Related research

    Keywords:

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Chung, Y. Peter & Johnson, Herb, 2011. "Extendible options: The general case," Finance Research Letters, Elsevier, vol. 8(1), pages 15-20, March.
    2. Ruas, João Pedro & Dias, José Carlos & Vidal Nunes, João Pedro, 2013. "Pricing and static hedging of American-style options under the jump to default extended CEV model," Journal of Banking & Finance, Elsevier, vol. 37(11), pages 4059-4072.
    3. Alfredo Ibáñez, 2003. "Robust Pricing of the American Put Option: A Note on Richardson Extrapolation and the Early Exercise Premium," Management Science, INFORMS, vol. 49(9), pages 1210-1228, September.
    4. Manuel Moreno & Javier Navas, 2003. "On the Robustness of Least-Squares Monte Carlo (LSM) for Pricing American Derivatives," Review of Derivatives Research, Springer, vol. 6(2), pages 107-128, May.
    5. Luca Barzanti & Corrado Corradi & Martina Nardon, 2006. "On the efficient application of the repeated Richardson extrapolation technique to option pricing," Working Papers 147, Department of Applied Mathematics, Università Ca' Foscari Venezia.
    6. Mark Broadie & Jérôme B. Detemple, 1996. "Recent Advances in Numerical Methods for Pricing Derivative Securities," CIRANO Working Papers 96s-17, CIRANO.
    7. Claus Munk, 1998. "The Markov Chain Approximation Approach for Numerical Solution of Stochastic Control Problems: Experiences from Merton's Problem," Finance 9802002, EconWPA.
    8. Chuang-Chang Chang & Jun-Biao Lin & Wei-Che Tsai & Yaw-Huei Wang, 2012. "Using Richardson extrapolation techniques to price American options with alternative stochastic processes," Review of Quantitative Finance and Accounting, Springer, vol. 39(3), pages 383-406, October.
    9. Roland Mallier & Ghada Alobaidi, 2000. "Laplace transforms and American options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 7(4), pages 241-256.
    10. Ben-Ameur, Hatem & de Frutos, Javier & Fakhfakh, Tarek & Diaby, Vacaba, 2013. "Upper and lower bounds for convex value functions of derivative contracts," Economic Modelling, Elsevier, vol. 34(C), pages 69-75.
    11. feng dai, 2004. "The Partial Distribution: Definition, Properties and Applications in Economy," Econometrics 0403008, EconWPA.
    12. D. J. Manuge & P. T. Kim, 2014. "A fast Fourier transform method for Mellin-type option pricing," Papers 1403.3756, arXiv.org, revised Mar 2014.
    13. Feng Dai & Lin Liang, 2005. "The Advance in Partial Distribution£ºA New Mathematical Tool for Economic Management," Econometrics 0508001, EconWPA.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:bla:jfinan:v:47:y:1992:i:2:p:809-16. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Wiley-Blackwell Digital Licensing) or (Christopher F. Baum).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.