IDEAS home Printed from https://ideas.repec.org/a/bla/agecon/v41y2010i2p135-149.html
   My bibliography  Save this article

Impacts of changing water inflow distributions on irrigation and farm income along the Drâa River in Morocco

Author

Listed:
  • Claudia Heidecke
  • Thomas Heckelei

Abstract

Irrigation water is essential for agriculture in the arid Drâa River basin in Morocco but climate change leads to increasingly unreliable water supply in the area. This article analyzes impacts of changing water inflow distributions on irrigation and farm income extending a conjunctive river basin model toward a stochastic modeling approach. Regional climate scenarios are used to derive a maximum likelihood density estimate of current and future water supplies. Based on these distributions, Monte Carlo simulations are performed to obtain stochastic model results on surface and groundwater irrigation as well as economic indicators for six oases along the river. The probability of farmers to receive revenues below the subsistence level is around 2% under current conditions, but this is likely to rise to rates of 6% to 15% depending on the underlying climate change scenario. The composition of water sources for irrigation will shift to more groundwater use. The river basin model is able to represent complex spatial interactions between oases as well as a partial complementarity between groundwater and surface water irrigation due to salinity management effects. Interestingly, the value of groundwater is not necessarily increasing under future climatic conditions as salinity problems are aggravated with expanded groundwater use.

Suggested Citation

  • Claudia Heidecke & Thomas Heckelei, 2010. "Impacts of changing water inflow distributions on irrigation and farm income along the Drâa River in Morocco," Agricultural Economics, International Association of Agricultural Economists, vol. 41(2), pages 135-149, March.
  • Handle: RePEc:bla:agecon:v:41:y:2010:i:2:p:135-149
    DOI: 10.1111/j.1574-0862.2009.00431.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1574-0862.2009.00431.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1574-0862.2009.00431.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Masahiko Gemma & Yacov Tsur, 2007. "The Stabilization Value of Groundwater and Conjunctive Water Management under Uncertainty," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 29(3), pages 540-548.
    2. Tsur, Yacov & Graham-Tomasi, Theodore, 1991. "The buffer value of groundwater with stochastic surface water supplies," Journal of Environmental Economics and Management, Elsevier, vol. 21(3), pages 201-224, November.
    3. Xinshen Diao & Ariel Dinar & Terry Roe & Yacov Tsur, 2008. "A general equilibrium analysis of conjunctive ground and surface water use with an application to Morocco," Agricultural Economics, International Association of Agricultural Economists, vol. 38(2), pages 117-135, March.
    4. Eli Feinerman & Keith C. Knapp, 1983. "Benefits from Groundwater Management: Magnitude, Sensitivity, and Distribution," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 65(4), pages 703-710.
    5. Thomas Heckelei & Hendrik Wolff, 2003. "Estimation of constrained optimisation models for agricultural supply analysis based on generalised maximum entropy," European Review of Agricultural Economics, Oxford University Press and the European Agricultural and Applied Economics Publications Foundation, vol. 30(1), pages 27-50, March.
    6. Richard E. Howitt, 1995. "Positive Mathematical Programming," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 77(2), pages 329-342.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jose Luis Ortega-Pozo & Francisco Javier Alcalá & José Manuel Poyatos & Jaime Martín-Pascual, 2022. "Wastewater Reuse for Irrigation Agriculture in Morocco: Influence of Regulation on Feasible Implementation," Land, MDPI, vol. 11(12), pages 1-17, December.
    2. Catarina Roseta‐Palma & Yiğit Sağlam, 2019. "Downside risk in reservoir management," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 63(2), pages 328-353, April.
    3. Aghapour Sabbaghi, Mohammad & Nazari, Mohammadreza & Araghinejad, Shahab & Soufizadeh, Saeid, 2020. "Economic impacts of climate change on water resources and agriculture in Zayandehroud river basin in Iran," Agricultural Water Management, Elsevier, vol. 241(C).
    4. Britz, Wolfgang, 2014. "A New Graphical User Interface Generator for Economic Models and its Comparison to Existing Approaches," German Journal of Agricultural Economics, Humboldt-Universitaet zu Berlin, Department for Agricultural Economics, vol. 63(04), pages 1-15, December.
    5. Yiğit Sağlam, 2019. "Welfare Implications of Water Scarcity: Higher Prices of Desalination," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 73(4), pages 995-1022, August.
    6. Britz, Wolfgang, 2014. "A New Graphical User Interface Generator for Economic Models and its Comparison to Existing Approaches," Journal of International Agricultural Trade and Development, Journal of International Agricultural Trade and Development, vol. 63(4).
    7. Wineman, Ayala & Crawford, Eric W., 2014. "Climate Change and Crop Choice in Zambia: A Mathematical Programming Approach," 2014 Annual Meeting, July 27-29, 2014, Minneapolis, Minnesota 170646, Agricultural and Applied Economics Association.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amine Chekireb & Julio Goncalves & Hubert Stahn & Agnes Tomini, 2021. "Private exploitation of the North-Western Sahara Aquifer System," Working Papers halshs-03457972, HAL.
    2. Phoebe Koundouri, 2004. "Current Issues in the Economics of Groundwater Resource Management," Journal of Economic Surveys, Wiley Blackwell, vol. 18(5), pages 703-740, December.
    3. Phoebe Koundouri, 2003. "Potential for groundwater management: Gisser-Sanchez effect reconsidered," DEOS Working Papers 0307, Athens University of Economics and Business.
    4. Britz, Wolfgang & Linda, Arata, "undated". "How Important Are Crop Shares In Managing Risk For Specialized Arable Farms? A Panel Estimation Of A Programming Model For Three European Regions," 56th Annual Conference, Bonn, Germany, September 28-30, 2016 244801, German Association of Agricultural Economists (GEWISOLA).
    5. CARPENTIER, Alain & GOHIN, Alexandre & SCKOKAI, Paolo & THOMAS, Alban, 2015. "Economic modelling of agricultural production: past advances and new challenges," Review of Agricultural and Environmental Studies - Revue d'Etudes en Agriculture et Environnement (RAEStud), Institut National de la Recherche Agronomique (INRA), vol. 96(1), March.
    6. Masahiko Gemma & Yacov Tsur, 2007. "The Stabilization Value of Groundwater and Conjunctive Water Management under Uncertainty ," Review of Agricultural Economics, Agricultural and Applied Economics Association, vol. 29(3), pages 540-548.
    7. Schuck, Eric C. & Green, Gareth P., 2002. "Supply-based water pricing in a conjunctive use system: implications for resource and energy use," Resource and Energy Economics, Elsevier, vol. 24(3), pages 175-192, June.
    8. Carpentier, Alain & Letort, Elodie, 2009. "Modeling acreage decisions within the multinomial Logit framework," Working Papers 211011, Institut National de la recherche Agronomique (INRA), Departement Sciences Sociales, Agriculture et Alimentation, Espace et Environnement (SAE2).
    9. Viaggi, Davide & Raggi, Meri & Gomez y Paloma, Sergio, 2011. "Farm-household investment behaviour and the CAP decoupling: Methodological issues in assessing policy impacts," Journal of Policy Modeling, Elsevier, vol. 33(1), pages 127-145, January.
    10. Msangi, Siwa & Howitt, Richard E., 2006. "Estimating Disaggregate Production Functions: An Application to Northern Mexico," 2006 Annual meeting, July 23-26, Long Beach, CA 21080, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    11. Hubert Stahn & Agnès Tomini, 2014. "On the Environmental Efficiency of Water Storage: The Case of a Conjunctive Use of Ground and Rainwater," AMSE Working Papers 1452, Aix-Marseille School of Economics, France.
    12. Jansson, Torbjörn & Heckelei, Thomas, 2009. "A new estimator for trade costs and its small sample properties," Economic Modelling, Elsevier, vol. 26(2), pages 489-498, March.
    13. Shew, Aaron M. & Nalley, Lawton L. & Durand-Morat, Alvaro & Meredith, Kylie & Parajuli, Ranjan & Thoma, Greg & Henry, Christopher G., 2021. "Holistically valuing public investments in agricultural water conservation," Agricultural Water Management, Elsevier, vol. 252(C).
    14. Liu, Xuan & van Kooten, Gerrit Cornelis & Duan, Jun, 2020. "Calibration of agricultural risk programming models using positive mathematical programming," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 64(3), July.
    15. Jansson, Torbjörn & Heckelei, Thomas & Gocht, Alexander & Basnet, Shyam Kumar & Zhang, Yinan & Neuenfeldt, Sebastian, 2014. "Analysing impacts of changing price variability with estimated farm risk-programming models," 2014 International Congress, August 26-29, 2014, Ljubljana, Slovenia 182665, European Association of Agricultural Economists.
    16. Louhichi, Kamel & Flichman, Guillermo & Blanco Fonseca, Maria, 2009. "A generic template for FSSIM," Reports 57463, Wageningen University, SEAMLESS: System for Environmental and Agricultural Modelling; Linking European Science and Society.
    17. Raphaël Soubeyran & Mabel Tidball & Agnes Tomini & Katrin Erdlenbruch, 2015. "Rainwater Harvesting and Groundwater Conservation: When Endogenous Heterogeneity Matters," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 62(1), pages 19-34, September.
    18. Pamela Giselle Katic, 2010. "Spatial dynamics and optimal resource extraction," Centre for Water Economics, Environment and Policy Papers 1002, Centre for Water Economics, Environment and Policy, Crawford School of Public Policy, The Australian National University.
    19. Koutchade, Philippe & Carpentier, Alain & Féménia, Fabienne, 2015. "Empirical modeling of production decisions of heterogeneous farmers with random parameter models," Working Papers 210097, Institut National de la recherche Agronomique (INRA), Departement Sciences Sociales, Agriculture et Alimentation, Espace et Environnement (SAE2).
    20. Cobourn, Kelly M., 2011. "Dynamic Feedback between Surface and Groundwater Systems: Implications for Conjunctive Management," 2011 Annual Meeting, July 24-26, 2011, Pittsburgh, Pennsylvania 103893, Agricultural and Applied Economics Association.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:agecon:v:41:y:2010:i:2:p:135-149. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://edirc.repec.org/data/iaaeeea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.