Advanced Search
MyIDEAS: Login

Seasonality Tests

Contents:

Author Info

  • Busetti, Fabio
  • Harvey, Andrew

Abstract

This article modifies and extends the test against nonstationary stochastic seasonality proposed by Canova and Hansen. A simplified form of the test statistic in which the nonparametric correction for serial correlation is based on estimates of the spectrum at the seasonal frequencies is considered and shown to have the same asymptotic distribution as the original formulation. Under the null hypothesis, the distribution of the seasonality test statistics is not affected by the inclusion of trends, even when modified to allow for structural breaks, or by the inclusion of regressors with nonseasonal unit roots. A parametric version of the test is proposed, and its performance is compared with that of the nonparametric test using Monte Carlo experiments. A test that allows for breaks in the seasonal pattern is then derived. It is shown that its asymptotic distribution is independent of the break point, and its use is illustrated with a series on U.K. marriages. A general test against any form of permanent seasonality, deterministic or stochastic, is suggested and compared with a Wald test for the significance of fixed seasonal dummies. It is noted that tests constructed in a similar way can be used to detect trading-day effects. An appealing feature of the proposed test statistics is that under the null hypothesis, they all have asymptotic distributions belonging to the Cramer-von Mises family.

Download Info

To our knowledge, this item is not available for download. To find whether it is available, there are three options:
1. Check below under "Related research" whether another version of this item is available online.
2. Check on the provider's web page whether it is in fact available.
3. Perform a search for a similarly titled item that would be available.

Bibliographic Info

Article provided by American Statistical Association in its journal Journal of Business and Economic Statistics.

Volume (Year): 21 (2003)
Issue (Month): 3 (July)
Pages: 420-36

as in new window
Handle: RePEc:bes:jnlbes:v:21:y:2003:i:3:p:420-36

Contact details of provider:
Web page: http://www.amstat.org/publications/jbes/index.cfm?fuseaction=main

Order Information:
Web: http://www.amstat.org/publications/index.html

Related research

Keywords:

References

No references listed on IDEAS
You can help add them by filling out this form.

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Fabio Busetti & Silvestro di Sanzo, 2011. "Bootstrap LR tests of stationarity, common trends and cointegration," Temi di discussione (Economic working papers) 799, Bank of Italy, Economic Research and International Relations Area.
  2. El Montasser, Ghassen, 2012. "The seasonal KPSS Test: some extensions and further results," MPRA Paper 45110, University Library of Munich, Germany, revised 04 Mar 2014.
  3. El Montasser, Ghassen, 2014. "The seasonal KPSS Test: some extensions and further results," MPRA Paper 54920, University Library of Munich, Germany.
  4. Siem Jan Koopman & Marius Ooms & Irma Hindrayanto, 2009. "Periodic Unobserved Cycles in Seasonal Time Series with an Application to US Unemployment," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 71(5), pages 683-713, October.
  5. Tommaso, Proietti & Stefano, Grassi, 2010. "Bayesian stochastic model specification search for seasonal and calendar effects," MPRA Paper 27305, University Library of Munich, Germany.
  6. Siem Jan Koopman & Marius Ooms & Irma Hindrayanto, 2006. "Periodic Unobserved Cycles in Seasonal Time Series with an Application to US Unemployment," Tinbergen Institute Discussion Papers 06-101/4, Tinbergen Institute.
  7. Irma Hindrayanto & John A.D. Aston & Siem Jan Koopman & Marius Ooms, 2010. "Modeling Trigonometric Seasonal Components for Monthly Economic Time Series," Tinbergen Institute Discussion Papers 10-018/4, Tinbergen Institute.
  8. Hindrayanto, Irma & Koopman, Siem Jan & Ooms, Marius, 2010. "Exact maximum likelihood estimation for non-stationary periodic time series models," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2641-2654, November.
  9. Tommaso Proietti & Cecilia Frale, 2007. "New proposals for the quantification of qualitative survey data," CEIS Research Paper 98, Tor Vergata University, CEIS.
  10. E. Andersson & D. Bock & M. Frisen, 2006. "Some statistical aspects of methods for detection of turning points in business cycles," Journal of Applied Statistics, Taylor & Francis Journals, vol. 33(3), pages 257-278.
  11. Fabio Busetti, 2003. "Tests of seasonal integration and cointegration in multivariate unobserved component models," Temi di discussione (Economic working papers) 476, Bank of Italy, Economic Research and International Relations Area.
  12. Svend Hylleberg, 2006. "Seasonal Adjustment," Economics Working Papers 2006-04, School of Economics and Management, University of Aarhus.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:bes:jnlbes:v:21:y:2003:i:3:p:420-36. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.