IDEAS home Printed from https://ideas.repec.org/a/ags/agreko/31698.html
   My bibliography  Save this article

Measuring the impact of climate change on South African agriculture: The case of sugar-cane growing regions

Author

Listed:
  • Deressa, T.
  • Hassan, Rashid M.
  • Poonyth, Daneswar

Abstract

This study employed a Ricardian model that captures farmers' adaptation to analyze the impact of climate change on South African Sugarcane production under irrigation and dryland conditions. The study utilized time series data for the period 1977 to 1998 pooled over 11 districts. Results showed that climate change has significant nonlinear impacts on net revenue per hectare of sugarcane in South Africa with higher sensitivity to future increases in temperature than precipitation. Irrigation did not prove to provide an effective option for mitigating climate change damages on sugarcane production in South Africa. The study suggests that adaptation strategies should focus special attention on technologies and management regimes that will enhance sugarcane tolerance to warmer temperatures during winter and especially the harvesting phases.

Suggested Citation

  • Deressa, T. & Hassan, Rashid M. & Poonyth, Daneswar, 2005. "Measuring the impact of climate change on South African agriculture: The case of sugar-cane growing regions," Agrekon, Agricultural Economics Association of South Africa (AEASA), vol. 44(4), pages 1-19, December.
  • Handle: RePEc:ags:agreko:31698
    DOI: 10.22004/ag.econ.31698
    as

    Download full text from publisher

    File URL: https://ageconsearch.umn.edu/record/31698/files/44040524.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.22004/ag.econ.31698?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Richard M. Adams, 1989. "Global Climate Change and Agriculture: An Economic Perspective," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 71(5), pages 1272-1279.
    2. Chang, Ching-Cheng, 2002. "The potential impact of climate change on Taiwan's agriculture," Agricultural Economics, Blackwell, vol. 27(1), pages 51-64, May.
    3. Mendelsohn, Robert & Nordhaus, William D & Shaw, Daigee, 1994. "The Impact of Global Warming on Agriculture: A Ricardian Analysis," American Economic Review, American Economic Association, vol. 84(4), pages 753-771, September.
    4. Dinar, A. & Mendelsohn, R. & Evenson, R. & Parikh, J. & Sanghi, A. & Kumar, K. & McKinsey, J. & Lonergen, S., 1998. "Measuring the Impact of CLimate Change on Indian Agriculture," Papers 402, World Bank - Technical Papers.
    5. Cynthia Rosenzweig, 1989. "Global Climate Change: Predictions and Observations," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 71(5), pages 1265-1271.
    6. Harry M. Kaiser & Susan J. Riha & Daniel S. Wilks & David G. Rossiter & Radha Sampath, 1993. "A Farm-Level Analysis of Economic and Agronomic Impacts of Gradual Climate Warming," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 75(2), pages 387-398.
    7. Erasmus, Barend & van Jaarsveld, Albert & van Zyl, Johan & Vink, Nick, 2000. "The effects of climate change on the farm sector in the Western Cape," Agrekon, Agricultural Economics Association of South Africa (AEASA), vol. 39(4), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sarker, Md. Abdur Rashid & Alam, Khorshed & Gow, Jeff, 2012. "Exploring the relationship between climate change and rice yield in Bangladesh: An analysis of time series data," Agricultural Systems, Elsevier, vol. 112(C), pages 11-16.
    2. Anslem Bawayelaazaa Nyuor & Emmanuel Donkor & Robert Aidoo & Samuel Saaka Buah & Jesse B. Naab & Stephen K. Nutsugah & Jules Bayala & Robert Zougmoré, 2016. "Economic Impacts of Climate Change on Cereal Production: Implications for Sustainable Agriculture in Northern Ghana," Sustainability, MDPI, vol. 8(8), pages 1-17, August.
    3. Drogué, Sophie & Jacquet, Florence & Subervie, Julie, 2014. "Introduction: Farmer’s adaptation to environmental changes," Review of Agricultural and Environmental Studies - Revue d'Etudes en Agriculture et Environnement (RAEStud), Institut National de la Recherche Agronomique (INRA), vol. 95(1).
    4. Jesse Tack & Ardian Harri & Keith Coble, 2012. "More than Mean Effects: Modeling the Effect of Climate on the Higher Order Moments of Crop Yields," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 94(5), pages 1037-1054.
    5. Sabrina Auci & Donatella Vignani, 2020. "Climate variability and agriculture in Italy: a stochastic frontier analysis at the regional level," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 37(2), pages 381-409, July.
    6. Noubissi Domguia, Edmond & Njangang, Henri, 2019. "Agricultural Growth and Environmental Quality in Cameroon: Evidence from ARDL Bound Testing Approach," MPRA Paper 91735, University Library of Munich, Germany.
    7. Garcia, Maria & Viladrich-Grau, Montserrat, 2009. "The economic relevance of climate variables in agriculture: The case of Spain," Economia Agraria y Recursos Naturales, Spanish Association of Agricultural Economists, vol. 9(02), pages 1-32.
    8. Wolfram Schlenker & W. Michael Hanemann & Anthony C. Fisher, 2005. "Will U.S. Agriculture Really Benefit from Global Warming? Accounting for Irrigation in the Hedonic Approach," American Economic Review, American Economic Association, vol. 95(1), pages 395-406, March.
    9. Deressa, Temesgen & Hassan, Rashid M. & Ringler, Claudia, 2008. "Measuring Ethiopian farmers' vulnerability to climate change across regional states:," IFPRI discussion papers 806, International Food Policy Research Institute (IFPRI).
    10. William M. Fonta & Aymar Y. Bossa & Mouhamadou B. Sylla, 2017. "The Economic Impact of Climate Change on Plantation Agriculture in Nigeria: Implication for Enhanced Productivity," Working Papers 342, African Economic Research Consortium, Research Department.
    11. Siddig, Khalid & Stepanyan, Davit & Wiebelt, Manfred & Grethe, Harald & Zhu, Tingju, 2020. "Climate change and agriculture in the Sudan: Impact pathways beyond changes in mean rainfall and temperature," Ecological Economics, Elsevier, vol. 169(C).
    12. Annalisa Marini, 2019. "The Impact of Weather on Commodity Prices: A Warning for the Future," Discussion Papers 1902, University of Exeter, Department of Economics.
    13. Fang, Ming & Jin, Songqing & Deininger, Klaus W., 2022. "Climate, land productivity and agricultural adaptation in Ukraine," 2022 Annual Meeting, July 31-August 2, Anaheim, California 322437, Agricultural and Applied Economics Association.
    14. Ajetomobi, Joshua Olusegun & Abidun, Ajiboye & Hassan, Rashid M., 2010. "Economic Impact of Climate Change on Irrigated Rice Agriculture in Nigeria," 2010 AAAE Third Conference/AEASA 48th Conference, September 19-23, 2010, Cape Town, South Africa 95778, African Association of Agricultural Economists (AAAE).
    15. Olivier Deschenes & Charles Kolstad, 2011. "Economic impacts of climate change on California agriculture," Climatic Change, Springer, vol. 109(1), pages 365-386, December.
    16. Melissa Dell & Benjamin F. Jones & Benjamin A. Olken, 2014. "What Do We Learn from the Weather? The New Climate-Economy Literature," Journal of Economic Literature, American Economic Association, vol. 52(3), pages 740-798, September.
    17. Farnaz Pourzand & Kendom Bell, 2021. "How climate affects agricultural land values in Aotearoa New Zealand," Working Papers 21_16, Motu Economic and Public Policy Research.
    18. Eric Njuki & Boris E Bravo-Ureta & Christopher J O’Donnell, 2018. "A new look at the decomposition of agricultural productivity growth incorporating weather effects," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-21, February.
    19. Ahmad, Munir & Nawaz, Muhammad & Iqbal, Muhammad & Javed, Sajid, 2014. "Analysing the Impact of Climate Change on Rice Productivity in Pakistan," MPRA Paper 72861, University Library of Munich, Germany.
    20. Kung, Chih-Chun & Wu, Tao, 2021. "Influence of water allocation on bioenergy production under climate change: A stochastic mathematical programming approach," Energy, Elsevier, vol. 231(C).

    More about this item

    Keywords

    Environmental Economics and Policy;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ags:agreko:31698. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: AgEcon Search (email available below). General contact details of provider: https://edirc.repec.org/data/aeasaea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.